Advertisement

Algorithmica

, Volume 65, Issue 4, pp 802–816 | Cite as

Parameterized Two-Player Nash Equilibrium

  • Danny Hermelin
  • Chien-Chung Huang
  • Stefan Kratsch
  • Magnus Wahlström
Article

Abstract

We study the problem of computing Nash equilibria in a two-player normal form (bimatrix) game from the perspective of parameterized complexity. Recent results proved hardness for a number of variants, when parameterized by the support size. We complement those results, by identifying three cases in which the problem becomes fixed-parameter tractable. Our results are based on a graph-theoretic representation of a bimatrix game, and on applying graph-theoretic tools on this representation.

Keywords

Two-player games Nash equilibrium Parameterized complexity Algorithms 

References

  1. 1.
    Abbott, T.G., Kane, D.M., Valiant, P.: On the complexity of two-player win-lose games. In: Proc. of the 46th Annual IEEE Symposium on Foundations Of Computer Science (FOCS), pp. 113–122 (2005) CrossRefGoogle Scholar
  2. 2.
    Addario-Berry, L., Olver, N., Vetta, A.: A polynomial time algorithm for finding Nash equilibria in planar win-lose games. J. Graph Algorithms Appl. 11(1), 309–319 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bosse, H., Byrka, J., Markakis, E.: New algorithms for approximate Nash equilibria in bimatrix games. Theor. Comput. Sci. 411(1), 164–173 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Chen, X., Deng, X.: 3-NASH is PPAD-complete. Electronic Colloquium on Computational Complexity (134) (2005) Google Scholar
  6. 6.
    Chen, J., Chor, B., Fellows, M., Huang, X., Juedes, D., Kanj, I.A., Xia, G.: Tight lower bounds for certain parameterized NP-hard problems. Inf. Comput. 201(2), 216–231 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Chen, X., Deng, X., Teng, S.-H.: Sparse games are hard. In: Proc. of the 2nd International Workshop on Internet and Network Economics (WINE), pp. 262–273 (2006) CrossRefGoogle Scholar
  8. 8.
    Chen, X., Teng, S.-H., Valiant, P.: The approximation complexity of win-lose games. In: Proc. of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 159–168 (2007) Google Scholar
  9. 9.
    Chen, X., Deng, X., Teng, S.-H.: Settling the complexity of computing two-player Nash equilibria. J. ACM 56(3), 1–57 (2009) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Codenotti, B., Leoncini, M., Resta, G.: Efficient computation of Nash equilibria for very sparse win-lose bimatrix games. In: Proc. of the 14th Annual European Symposium on Algorithms (ESA), pp. 232–243 (2006) Google Scholar
  11. 11.
    Daskalakis, C., Papadimitriou, C.H.: Three-player games are hard. Electronic Colloquium on Computational Complexity (139) (2005) Google Scholar
  12. 12.
    Daskalakis, C., Papadimitriou, C.H.: On oblivious PTAS’s for Nash equilibrium. In: Proc. of the 41st Annual ACM Symposium on Theory Of Computing (STOC), pp. 75–84 (2009) CrossRefGoogle Scholar
  13. 13.
    Daskalakis, C., Mehta, A., Papadimitriou, C.H.: Progress in approximate Nash equilibria. In: Proc. of the 8th ACM Conference on Electronic Commerce (EC), pp. 355–358 (2007) Google Scholar
  14. 14.
    Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a Nash equilibrium. Commun. ACM 52(2), 89–97 (2009) CrossRefGoogle Scholar
  15. 15.
    Daskalakis, C., Mehta, A., Papadimitriou, C.H.: A note on approximate Nash equilibria. Theor. Comput. Sci. 410(17), 1581–1588 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1999) CrossRefGoogle Scholar
  17. 17.
    Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. J. Graph Algorithms Appl. 3(3), 1–27 (1999) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Estivill-Castro, V., Parsa, M.: Computing Nash equilibria gets harder: New results show hardness even for parameterized complexity. In: Proc. of the 15th Computing: The Australasian Theory Symposium (CATS), vol. 94, pp. 81–87 (2009) Google Scholar
  19. 19.
    Estivill-Castro, V., Parsa, M.: Single parameter fpt-algorithms for non-trivial games. In: Proc. of the 21st International Workshop On Combinatorial Algorithms (IWOCA), pp. 121–124 (2010) Google Scholar
  20. 20.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006) Google Scholar
  21. 21.
    Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. J. Comput. Syst. Sci. 77(1), 91–106 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Gilboa, I., Zemel, E.: Nash and correlated equilibria: Some complexity considerations. Games Econ. Behav. 1(1), 80–93 (1989) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Goldberg, P.W., Papadimitriou, C.H.: Reducibility among equilibrium problems. In: Proc. of the 38th Annual ACM Symposium on Theory Of Computing (STOC), pp. 61–70 (2006) Google Scholar
  24. 24.
    Kalyanaraman, S., Umans, C.: Algorithms for playing games with limited randomness. In: Proc. of the 15th Annual European Symposium on Algorithms (ESA), pp. 323–334 (2007) Google Scholar
  25. 25.
    Kannan, R., Theobald, T.: Games of fixed rank: a hierarchy of bimatrix games. Econ. Theory 42, 157–173 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Kontogiannis, S.C., Spirakis, P.G.: Exploiting concavity in bimatrix games: New polynomially tractable subclasses. In: Proc. of the 13th International Workshop on Algorithms and Techniques for Approximation, Randomization, and Combinatorial Optimization (APPROX), pp. 312–325 (2010) CrossRefGoogle Scholar
  27. 27.
    Lipton, R.J., Markakis, E., Mehta, A.: Playing large games using simple strategies. In: Proc. of the 4th ACM Conference on Electronic Commerce (EC), pp. 36–41 (2003) Google Scholar
  28. 28.
    Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V.V.: Algorithmic Game Theory. Cambridge University Press, Cambridge (2007) zbMATHCrossRefGoogle Scholar
  29. 29.
    Papadimitriou, C.H.: Algorithms, games, and the Internet. In: Proc. of the 33rd Annual ACM Symposium on Theory of Computing (STOC), pp. 749–753 (2001) Google Scholar
  30. 30.
    Tsaknakis, H., Spirakis, P.G.: An optimization approach for approximate Nash equilibria. Internet Math. 5(4), 365–382 (2008) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Danny Hermelin
    • 1
  • Chien-Chung Huang
    • 2
  • Stefan Kratsch
    • 3
  • Magnus Wahlström
    • 1
  1. 1.Max-Planck-Institute for InformaticsSaarbrückenGermany
  2. 2.Humboldt-Universität zu BerlinBerlinGermany
  3. 3.Utrecht UniversityUtrechtThe Netherlands

Personalised recommendations