Algorithmica

, Volume 64, Issue 4, pp 643–672 | Cite as

A Simple Ant Colony Optimizer for Stochastic Shortest Path Problems

Article

Abstract

Ant Colony Optimization (ACO) is a popular optimization paradigm inspired by the capabilities of natural ant colonies of finding shortest paths between their nest and a food source. This has led to many successful applications for various combinatorial problems. The reason for the success of ACO, however, is not well understood and there is a need for a rigorous theoretical foundation.

We analyze the running time of a simple ant colony optimizer for stochastic shortest path problems where edge weights are subject to noise that reflects delays and uncertainty. In particular, we consider various noise models, ranging from general, arbitrary noise with possible dependencies to more specific models such as independent gamma-distributed noise. The question is whether the ants can find or approximate shortest paths in the presence of noise. We characterize instances where the ants can discover the real shortest paths efficiently. For general instances we prove upper bounds for the time until the algorithm finds reasonable approximations. Contrariwise, for independent gamma-distributed noise we present a graph where the ant system needs exponential time to find a good approximation. The behavior of the ant system changes dramatically when the noise is perfectly correlated as then the ants find shortest paths efficiently. Our results shed light on trade-offs between the noise strength, approximation guarantees, and expected running times.

Keywords

Ant colony optimization Combinatorial optimization Running time analysis Shortest path problems Stochastic optimization 

References

  1. 1.
    Abraham, I., Fiat, A., Goldberg, A.V., Werneck, R.F.F.: Highway dimension, shortest paths, and provably efficient algorithms. In: Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’10), pp. 782–793. SIAM, Philadelphia (2010) Google Scholar
  2. 2.
    Attiratanasunthron, N., Fakcharoenphol, J.: A running time analysis of an ant colony optimization algorithm for shortest paths in directed acyclic graphs. Inf. Process. Lett. 105(3), 88–92 (2008) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast routing in road networks with transit nodes. Science 316(5824), 566 (2007) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Baswana, S., Biswas, S., Doerr, B., Friedrich, T., Kurur, P.P., Neumann, F.: Computing single source shortest paths using single-objective fitness functions. In: Proceedings of the International Workshop on Foundations of Genetic Algorithms (FOGA’09), pp. 59–66. ACM, New York (2009) Google Scholar
  5. 5.
    Bertsekas, D.P., Tsitsiklis, J.N.: An analysis of stochastic shortest path problems. Math. Oper. Res. 16(3), 580–595 (1991) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Borkar, V., Das, D.: A novel ACO algorithm for optimization via reinforcement and initial bias. Swarm Intell. 3(1), 3–34 (2009) CrossRefGoogle Scholar
  7. 7.
    Boyan, J.A., Mitzenmacher, M.: Improved results for route planning in stochastic transportation. In: Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’01), pp. 895–902. SIAM, Philadelphia (2001) Google Scholar
  8. 8.
    Chan, T.M.: More algorithms for all-pairs shortest paths in weighted graphs. In: Proceedings of the Annual ACM Symposium on Theory of Computing (STOC’07), pp. 590–598. ACM, New York (2007) Google Scholar
  9. 9.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001) MATHGoogle Scholar
  10. 10.
    Doerr, B., Johannsen, D.: Edge-based representation beats vertex-based representation in shortest path problems. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’10), pp. 759–766. ACM, New York (2010) CrossRefGoogle Scholar
  11. 11.
    Doerr, B., Theile, M.: Improved analysis methods for crossover-based algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’09), pp. 247–254. ACM, New York (2009) Google Scholar
  12. 12.
    Doerr, B., Happ, E., Klein, C.: A tight analysis of the (1+1)-EA for the single source shortest path problem. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC’07), pp. 1890–1895. IEEE Press, New York (2007) CrossRefGoogle Scholar
  13. 13.
    Doerr, B., Happ, E., Klein, C.: Crossover can provably be useful in evolutionary computation. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’08), pp. 539–546. ACM, New York (2008) CrossRefGoogle Scholar
  14. 14.
    Doerr, B., Johannsen, D., Kötzing, T., Neumann, F., Theile, M.: More effective crossover operators for the all-pairs shortest path problem. In: Proceedings of the International Conference on Parallel Problem Solving from Nature (PPSN’10), pp. 184–193. Springer, Berlin (2010) CrossRefGoogle Scholar
  15. 15.
    Doerr, B., Neumann, F., Sudholt, D., Witt, C.: Runtime analysis of the 1-ANT ant colony optimizer. Theor. Comput. Sci. 412(17), 1629–1644 (2011) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Dorigo, M., Blum, C.: Ant colony optimization theory: a survey. Theor. Comput. Sci. 344(2–3), 243–278 (2005) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997) CrossRefGoogle Scholar
  18. 18.
    Dorigo, M., Stützle, T.: Ant Colony Optimization, 1st edn. MIT Press, Cambridge (2004) MATHCrossRefGoogle Scholar
  19. 19.
    Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: an autocatalytic optimizing process. Technical Report 91-016 Revised, Politecnico di Milano (1991) Google Scholar
  20. 20.
    Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theor. Comput. Sci. 276(1–2), 51–81 (2002) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Dubhashi, D., Panconesi, A.: Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press, Cambridge (2009) MATHCrossRefGoogle Scholar
  22. 22.
    Fan, Y.Y., Kalaba, R.E., Moore, J.E.: Arriving on time. J. Optim. Theory Appl. 127(3), 497–513 (2005) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Feige, U.: On sums of independent random variables with unbounded variance and estimating the average degree in a graph. SIAM J. Comput. 35(4), 964–984 (2006) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Gutjahr, W.J., Sebastiani, G.: Runtime analysis of ant colony optimization with best-so-far reinforcement. Methodol. Comput. Appl. Probab. 10(3), 409–433 (2008) MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Horoba, C.: Exploring the runtime of an evolutionary algorithm for the multi-objective shortest path problem. Evol. Comput. 18(3), 357–381 (2010) CrossRefGoogle Scholar
  26. 26.
    Horoba, C., Sudholt, D.: Running time analysis of ACO systems for shortest path problems. In: Proceedings of the International Workshop on Engineering Stochastic Local Search Algorithms (SLS ’09), pp. 76–91. Springer, Berlin (2009) Google Scholar
  27. 27.
    Horoba, C., Sudholt, D.: Ant colony optimization for stochastic shortest path problems. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’10), pp. 1465–1472. Springer, Berlin (2010) CrossRefGoogle Scholar
  28. 28.
    Kolavali, S.R., Bhatnagar, S.: Ant colony optimization algorithms for shortest path problems. In: Altman, E., Chaintreau, A. (eds.) Network Control and Optimization, pp. 37–44. Springer, Berlin (2009) CrossRefGoogle Scholar
  29. 29.
    Kötzing, T., Lehre, P.K., Oliveto, P.S., Neumann, F.: Ant colony optimization and the minimum cut problem. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’10), pp. 1393–1400. ACM, New York (2010) CrossRefGoogle Scholar
  30. 30.
    Kötzing, T., Neumann, F., Röglin, H., Witt, C.: Theoretical properties of two ACO approaches for the traveling salesman problem. In: Proceedings of the International Conference on Ant Colony Optimization and Swarm Intelligence (ANTS’10), pp. 324–335. Springer, Berlin (2010) Google Scholar
  31. 31.
    Kötzing, T., Neumann, F., Sudholt, D., Wagner, M.: Simple Max-Min ant systems and the optimization of linear pseudo-Boolean functions. In: Proceedings of the 11th Workshop on Foundations of Genetic Algorithms (FOGA 2011), pp. 209–218. ACM, New York (2011) CrossRefGoogle Scholar
  32. 32.
    Miller-Hooks, E.D., Mahmassani, H.S.: Least expected time paths in stochastic, time-varying transportation networks. Transp. Sci. 34(2), 198–215 (2000) MATHCrossRefGoogle Scholar
  33. 33.
    Neumann, F., Theile, M.: How crossover speeds up evolutionary algorithms for the multi-criteria all-pairs-shortest-path problem. In: Proceedings of the International Conference on Parallel Problem Solving from Nature (PPSN’10), pp. 667–676. Springer, Berlin (2010) CrossRefGoogle Scholar
  34. 34.
    Neumann, F., Witt, C.: Ant colony optimization and the minimum spanning tree problem. Theor. Comput. Sci. 411(25), 2406–2413 (2010) MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Neumann, F., Witt, C.: Runtime analysis of a simple ant colony optimization algorithm. Algorithmica 54(2), 243–255 (2009) MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Neumann, F., Sudholt, D., Witt, C.: Rigorous analyses for the combination of ant colony optimization and local search. In: Proceedings of the International Conference on Ant Colony Optimization and Swarm Intelligence (ANTS’08), pp. 132–143. Springer, Berlin (2008) CrossRefGoogle Scholar
  37. 37.
    Neumann, F., Sudholt, D., Witt, C.: Analysis of different MMAS ACO algorithms on unimodal functions and plateaus. Swarm Intell. 3(1), 35–68 (2009) CrossRefGoogle Scholar
  38. 38.
    Neumann, F., Sudholt, D., Witt, C.: A few ants are enough: ACO with iteration-best update. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’10), pp. 63–70. ACM, New York (2010) CrossRefGoogle Scholar
  39. 39.
    Nikolova, E., Brand, M., Karger, D.R.: Optimal route planning under uncertainty. In: Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS’06), pp. 131–141. AAAI Press, Menlo Park (2006) Google Scholar
  40. 40.
    Orlin, J.B., Madduri, K., Subramani, K., Williamson, M.: A faster algorithm for the single source shortest path problem with few distinct positive lengths. J. Discrete Algorithms 8(2), 189–198 (2010) MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Papadimitriou, C.H., Yannakakis, M.: Shortest paths without a map. Theor. Comput. Sci. 84(1), 127–150 (1991) MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Scharnow, J., Tinnefeld, K., Wegener, I.: The analysis of evolutionary algorithms on sorting and shortest paths problems. J. Math. Model. Algorithms 3(4), 349–366 (2004) MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Sudholt, D.: Using Markov-chain mixing time estimates for the analysis of ant colony optimization. In: Proceedings of the 11th Workshop on Foundations of Genetic Algorithms (FOGA 2011), pp. 139–150. ACM, New York (2011) CrossRefGoogle Scholar
  44. 44.
    Sudholt, D., Thyssen, C.: Running time analysis of ant colony optimization for shortest path problems. J. Discrete Algorithms. doi:10.1016/j.jda.2011.06.002 (2011, to appear)
  45. 45.
    Zhou, Y.: Runtime analysis of an ant colony optimization algorithm for TSP instances. IEEE Trans. Evol. Comput. 13(5), 1083–1092 (2009) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.CERCIA, School of Computer ScienceUniversity of BirminghamBirminghamUK
  2. 2.Fakultät für Informatik, LS 2Technische Universität DortmundDortmundGermany

Personalised recommendations