Algorithmica

, Volume 65, Issue 2, pp 275–316 | Cite as

Cleaning Interval Graphs

Article

Abstract

We investigate a special case of the Induced Subgraph Isomorphism problem, where both input graphs are interval graphs. We show the NP-hardness of this problem, and we prove fixed-parameter tractability of the problem with non-standard parameterization, where the parameter is the difference |V(G)|−|V(H)|, with G and H being the larger and the smaller input graph, respectively. Intuitively, we can interpret this problem as “cleaning” the graph G, regarded as a pattern containing extra vertices indicating errors, in order to obtain the graph H representing the original pattern. We also prove W[1]-hardness for the standard parameterization where the parameter is |V(H)|.

Keywords

Interval graphs Induced subgraph isomorphism Parameterized complexity 

Notes

Acknowledgement

Supported by the Hungarian National Research Fund OTKA 67651. Schlotter was also supported by the European Union and the European Social Fund (grant TÁMOP 4.2.1./B-09/1/KMR-2010-0003).

References

  1. 1.
    Bodlaender, H.L.: Polynomial algorithms for graph isomorphism and chromatic index on partial k-trees. J. Algorithms 11(4), 631–643 (1990) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13, 335–379 (1976) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Cai, L., Chan, S.M., Chan, S.O.: Random separation: A new method for solving fixed-cardinality optimization problems. In: IWPEC 2006: Proceedings of the 2nd International Workshop on Parameterized and Exact Computation. Lecture Notes in Computer Science, vol. 4169, pp. 239–250. Springer, Berlin (2006) CrossRefGoogle Scholar
  4. 4.
    Colbourn, C.J.: On testing isomorphism of permutation graphs. Networks 11, 13–21 (1981) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Colbourn, C.J., Booth, K.S.: Linear time automorphism algorithms for trees, interval graphs, and planar graphs. SIAM J. Comput. 10(1), 203–225 (1981) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Díaz, J., Thilikos, D.M.: Fast FPT-algorithms for cleaning grids. In: STACS 2006: Proceedings of the 23rd Annual Symposium on Theoretical Aspects of Computer Science. Lecture Notes in Computer Science, vol. 3884, pp. 361–371. Springer, Berlin (2006) Google Scholar
  7. 7.
    Dinitz, Y., Itai, A., Rodeh, M.: On an algorithm of Zemlyachenko for subtree isomorphism. Inf. Process. Lett. 70(3), 141–146 (1999) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, New York (1999) CrossRefGoogle Scholar
  9. 9.
    Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. J. Graph Algorithms Appl. 3(3), 1–27 (1999) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Filotti, I.S., Mayer, J.N.: A polynomial-time algorithm for determining the isomorphism of graphs of fixed genus (working paper). In: STOC 1980: Proceedings of the 12th Annual ACM Symposium on Theory of Computing, pp. 236–243. ACM, New York (1980) CrossRefGoogle Scholar
  11. 11.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, New York (2006) Google Scholar
  12. 12.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences. Freeman, New York (1979) MATHGoogle Scholar
  13. 13.
    Gilmore, P.C., Hoffman, A.J.: A characterization of comparability graphs and of interval graphs. Can. J. Math. 16, 539–548 (1964) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Hajiaghayi, M., Nishimura, N.: Subgraph isomorphism, log-bounded fragmentation, and graphs of (locally) bounded treewidth. J. Comput. Syst. Sci. 73(5), 755–768 (2007) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Lingas, A.: Subgraph isomorphism for biconnected outerplanar graphs in cubic time. Theor. Comput. Sci. 63(3), 295–302 (1989) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Lueker, G.S., Booth, K.S.: A linear time algorithm for deciding interval graph isomorphism. J. ACM 26(2), 183–195 (1979) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial time. J. Comput. Syst. Sci. 25(1), 42–65 (1982) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Marx, D., Schlotter, I.: Parameterized graph cleaning problems. Discrete Appl. Math. 157(15), 3258–3267 (2009) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Matula, D.W.: Subtree isomorphism in O(n 5/2). Ann. Discrete Math. 2, 91–106 (1978) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Miller, G.L.: Isomorphism testing for graphs of bounded genus. In: STOC 1980: Proceedings of the 12th Annual ACM Symposium on Theory of Computing, pp. 225–235. ACM, New York (1980) CrossRefGoogle Scholar
  21. 21.
    Zemlyachenko, V.N.: Canonical numbering of trees. In: Proc. Seminar on Comb. Anal. at Moscow State University (1970). (In Russian) Google Scholar
  22. 22.
    Zemlyachenko, V.N.: Determining tree isomorphism. In: Voprosy Kibernetiki, Proc. of the Seminar on Combinatorial Mathematics, Moscow, 1971, pp. 54–60. Akad. Nauk SSSR, Scientific Council on the Complex Problem “Cybernetics”, 1973. (In Russian) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Computer and Automation Research InstituteHungarian Academy of Sciences (MTA SZTAKI)BudapestHungary
  2. 2.Department of Computer Science and Information TheoryBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations