Algorithmica

, Volume 65, Issue 1, pp 129–145 | Cite as

Exact Algorithms for Finding Longest Cycles in Claw-Free Graphs

  • Hajo Broersma
  • Fedor V. Fomin
  • Pim van ’t Hof
  • Daniël Paulusma
Article

Abstract

The Hamiltonian Cycle problem is the problem of deciding whether an n-vertex graph G has a cycle passing through all vertices of G. This problem is a classic NP-complete problem. Finding an exact algorithm that solves it in \({\mathcal {O}}^{*}(\alpha^{n})\) time for some constant α<2 was a notorious open problem until very recently, when Björklund presented a randomized algorithm that uses \({\mathcal {O}}^{*}(1.657^{n})\) time and polynomial space. The Longest Cycle problem, in which the task is to find a cycle of maximum length, is a natural generalization of the Hamiltonian Cycle problem. For a claw-free graph G, finding a longest cycle is equivalent to finding a closed trail (i.e., a connected even subgraph, possibly consisting of a single vertex) that dominates the largest number of edges of some associated graph H. Using this translation we obtain two deterministic algorithms that solve the Longest Cycle problem, and consequently the Hamiltonian Cycle problem, for claw-free graphs: one algorithm that uses \({\mathcal {O}}^{*}(1.6818^{n})\) time and exponential space, and one algorithm that uses \({\mathcal {O}}^{*}(1.8878^{n})\) time and polynomial space.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bax, E.T.: Inclusion and exclusion algorithm for the Hamiltonian path problem. Inf. Process. Lett. 47(4), 203–207 (1993) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Björklund, A.: Determinant sums for undirected hamiltonicity. In: 51st Annual Symposium on Foundations of Computer Science (FOCS 2010), pp. 173–182. IEEE Computer Society, Los Alamitos (2010) CrossRefGoogle Scholar
  3. 3.
    Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: The travelling salesman problem in bounded degree graphs. In: Aceto, L., Damgaard, I., Goldberg, L.A., Halldorsson, M.M., Ingolfsdottir, A., Walukiewicz, I. (eds.) 35th International Colloquium on Automata, Languages and Programming (ICALP 2008). Lecture Notes in Computer Science, vol. 5125, pp. 198–209. Springer, Berlin (2008) CrossRefGoogle Scholar
  4. 4.
    Broersma, H.J., Fomin, F.V., van ’t Hof, P., Paulusma, D.: Fast exact algorithms for hamiltonicity in claw-free graphs. In: Paul, C., Habib, M. (eds.) 35th International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2009) Lecture Notes in Computer Science, vol. 5911, pp. 44–53. Springer, Berlin (2009) CrossRefGoogle Scholar
  5. 5.
    Broersma, H.J., Paulusma, D.: Computing sharp 2-factors in claw-free graphs. J. Discrete Algorithms 8(3), 321–329 (2010) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Diestel, R.: Graph Theory, 3rd edn. Springer, Heidelberg (2005) MATHGoogle Scholar
  7. 7.
    Dorn, F., Fomin, F.V., Thilikos, D.M.: Catalan structures and dynamic programming on H-minor-free graphs. In: Teng, S.-H. (ed.) Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2008), pp. 631–640. ACM-SIAM, Philadelphia (2008) Google Scholar
  8. 8.
    Dorn, F., Penninkx, E., Bodlaender, H., Fomin, F.V.: Efficient exact algorithms on planar graphs: exploiting sphere cut branch decompositions. Algorithmica 58(3), 790–810 (2010) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Eppstein, D.: The traveling salesman problem for cubic graphs. J. Graph Algorithms Appl. 11(1), 61–81 (2007) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Faudree, R., Flandrin, E., Ryjáček, Z.: Claw-free graphs—a survey. Discrete Math. 164(1–3), 87–147 (1997) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Garey, M.R., Johnson, D.S.: Computers Intractability. Freeman, New York (1979) MATHGoogle Scholar
  12. 12.
    Gebauer, H.: Finding and enumerating Hamilton cycles in 4-regular graphs. Theor. Comput. Sci. 412(35), 4579–4591 (2011) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Harary, F.: Graph Theory. Addison-Wesley, Reading (1969) Google Scholar
  14. 14.
    Harary, F., Nash-Williams, C.St.J.A.: On Eulerian and Hamiltonian graphs and line graphs. Can. Math. Bull. 8(6), 701–709 (1965) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. J. Soc. Ind. Appl. Math. 10(1), 196–210 (1962) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Iwama, K., Nakashima, T.: An improved exact algorithm for cubic graph TSP. In: Lin, G. (ed.) 13th Annual International Computing and Combinatorics Conference (COCOON 2007). Lecture Notes in Computer Science, vol. 4598, pp. 108–117. Springer, Berlin (2007) Google Scholar
  17. 17.
    Karp, R.M.: Dynamic programming meets the principle of inclusion and exclusion. Oper. Res. Lett. 1(2), 49–51 (1982) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Kohn, S., Gottlieb, A., Kohn, M.: A generating function approach to the traveling salesman problem. In: Proceedings of the ACM Annual Conference (ACM 1977), pp. 294–300. ACM Press, New York (1977) CrossRefGoogle Scholar
  19. 19.
    Kuipers, E.J., Veldman, H.J.: Recognizing claw-free Hamiltonian graphs with large minimum degree. Memorandum 1437, University of Twente, Enschede (1998) Google Scholar
  20. 20.
    Li, M., Corneil, D.G., Mendelsohn, E.: Pancyclicity and NP-completeness in planar graphs. Discrete Appl. Math. 98(3), 219–225 (2000) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Lonc, Z.: On the complexity of some edge-partition problems for graphs. Discrete Appl. Math. 70(2), 177–183 (1996) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Müller, H.: Hamiltonian circuits in chordal bipartite graphs. Discrete Math. 156(1–3), 291–298 (1996) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Oberly, D.J., Simić, S.K., Sumner, D.P.,: Every connected, locally connected nontrivial graph with no induced claw is Hamiltonian. J. Graph Theory 3(4), 351–356 (1979) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Roussopoulos, N.D.: A max {m,n} algorithm for determining the graph H from its line graph G. Inf. Process. Lett. 2(4), 108–112 (1973) MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Ryjáček, Z.: On a closure concept in claw-free graphs. J. Comb. Theory, Ser. B 70(2), 217–224 (1997) MATHCrossRefGoogle Scholar
  26. 26.
    Thomassen, C., Toft, B.: Non-separating induced cycles in graphs. J. Comb. Theory, Ser. B 31(2), 199–224 (1981) MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Woeginger, G.J.: Open problems around exact algorithms. Discrete Appl. Math. 156(3), 397–405 (2008) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Hajo Broersma
    • 1
  • Fedor V. Fomin
    • 2
  • Pim van ’t Hof
    • 1
  • Daniël Paulusma
    • 1
  1. 1.School of Engineering and Computing Sciences, Science LaboratoriesDurham UniversityDurhamUK
  2. 2.Department of InformaticsUniversity of BergenBergenNorway

Personalised recommendations