Algorithmica

, 61:1022 | Cite as

Extending Steinitz’s Theorem to Upward Star-Shaped Polyhedra and Spherical Polyhedra

Article
  • 205 Downloads

Abstract

In 1922, Steinitz’s theorem gave a complete characterization of the topological structure of the vertices, edges, and faces of convex polyhedra as triconnected planar graphs. In this paper, we generalize Steinitz’s theorem to non-convex polyhedra. More specifically, we introduce a new class of polyhedra, wider than convex polyhedra, called upward star-shaped polyhedra and spherical polyhedra, and present graph-theoretic characterization for both polyhedra. Upward star-shaped polyhedra are polyhedra where each face is star-shaped, all faces except the bottom face are visible from a view point, and any two faces sharing two vertices are non-coplanar. Spherical polyhedra are non-singular, non-coplanar polyhedra with no holes.

We first present a graph-theoretic characterization of upward star-shaped polyhedra, i.e., characterization of upward star-shaped polyhedral graphs, which are the vertex-edge graphs (or 1-skeleton) of the upward star-shaped polyhedra. Roughly speaking, they correspond to biconnected planar graphs with special conditions. The proof of the characterization leads to an algorithm that constructs an upward star-shaped polyhedron with n vertices in O(n 1.5) time. Moreover, one can test whether a given plane graph is an upward star-shaped polyhedral graph in linear time.

We then present a graph-theoretic characterization of spherical polyhedra for planar cubic graphs, and planar graphs with maximum face size 4. We also formally define the Polyhedra Realizability Problem, and discuss its reducibility.

Our result is the first graph-theoretic characterization of non-convex polyhedra, which solves an open problem posed by Grünbaum (Discrete Math. 307(3–5), 445–463, 2007), and a generalization of Steinitz’s theorem (Polyeder und Raumeinteilungen, 1922), which characterized convex polyhedra as triconnected planar graphs.

Keywords

Graph drawing Steinitz’s theorem Convex drawing Planar graphs Biconnected graphs Triconnected graphs Polyhedra Polytopes Convex polytopes Non-convex polytopes Polyhedral graphs Upward star-shaped polyhedra Spherical polyhedra 

References

  1. 1.
    Andreev, E.M.: On convex polyhedra in Lobacevskii spaces. Math. USSR Sb. 10(3), 413–440 (1970) MATHCrossRefGoogle Scholar
  2. 2.
    Barnette, D., Grünbaum, B.: On Steinitz’s theorem concerning convex 3-polytopes and on some properties of 3-connected graphs. In: Many Facets of Graph Theory. Lecture Notes in Mathematics, vol. 110, pp. 27–39. Springer, Berlin (1969) CrossRefGoogle Scholar
  3. 3.
    Barnette, D.W., Grünbaum, B.: Preassigning the shape of a face. Pac. J. Math. 32, 299–302 (1970) MATHGoogle Scholar
  4. 4.
    Blind, R., Mani, P.: On puzzles and polytope isomorphisms. Aequ. Math. 34, 287–297 (1987) MATHCrossRefGoogle Scholar
  5. 5.
    Bonichon, N., Felsner, S., Mosbah, M.: Convex drawings of 3-connected plane graphs. In: Proceedings of Graph Drawing 2004. LNCS, vol. 3383, pp. 60–70 (2005) CrossRefGoogle Scholar
  6. 6.
    Chiba, N., Yamanouchi, T., Nishizeki, T.: Linear algorithms for convex drawings of planar graphs. In: Progress in Graph Theory, pp. 153–173. Academic Press, New York (1984) Google Scholar
  7. 7.
    Chrobak, M., Kant, G.: Convex grid drawings of 3-connected planar graphs. Int. J. Comput. Geom. Appl. 7, 211–223 (1997) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chrobak, M., Goodrich, M.T., Tamassia, R.: Convex drawings of graphs in two and three dimensions. In: Proceedings of SoCG 1996, pp. 319–328 (1996) Google Scholar
  9. 9.
    Connelly, R.: Rigidity and energy. Invent. Math. 66(1), 11–33 (1982) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Coxeter, H.S.M.: Regular Polytopes. Dover Publications, New York (1973) Google Scholar
  11. 11.
    Crapo, H., Whiteley, W.: Statics of frameworks and motions of panel structures, a projective geometric introduction. Struct. Topol. 6, 42–82 (1982) MathSciNetGoogle Scholar
  12. 12.
    Crapo, H., Whiteley, W.: Plane stresses and projected polyhedra I: the basic pattern. Struct. Topol. 20, 55–68 (1993) MathSciNetMATHGoogle Scholar
  13. 13.
    Cremona, L.: Graphical Statics. Oxford University Press, Oxford (1890) (Transl. of Le figure reciproche nelle statica graphica, Milano, 1872) MATHGoogle Scholar
  14. 14.
    Cromwell, P.R.: Polyhedra. Cambridge University Press, Cambridge (1999) MATHGoogle Scholar
  15. 15.
    Das, G., Goodrich, M.T.: On the complexity of optimization problems for 3-dimensional convex polyhedra and decision trees. Comput. Geom. 8, 123–137 (1997) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Demaine, E., Erickson, J.: Open problems on polytope reconstruction. Manuscript (1999) Google Scholar
  17. 17.
    Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25(5), 956–997 (1996) MATHGoogle Scholar
  18. 18.
    Di Battista, G., Tamassia, R.: On-line maintenance of triconnected components with SPQR-trees. Algorithmica 15, 302–318 (1996) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, New York (1999) MATHGoogle Scholar
  20. 20.
    Di Battista, G., Frati, F., Patrignani, M.: Non-convex representations of graphs. In: Proceedings of Graph Drawing 2008, pp. 390–395 (2009) CrossRefGoogle Scholar
  21. 21.
    Eades, P., Garvan, P.: Drawing stressed planar graphs in three dimensions. In: Proceedings of Graph Drawing 1995. LNCS, vol. 1027, pp. 212–223 (1995) CrossRefGoogle Scholar
  22. 22.
  23. 23.
    Grünbaum, B.: Convex Polytopes. Interscience, London (1967) MATHGoogle Scholar
  24. 24.
    Grünbaum, B.: Polytopes, graphs, and complexes. Bull. Am. Math. Soc. 76, 1131–1201 (1970) MATHCrossRefGoogle Scholar
  25. 25.
    Grünbaum, B.: Polytopal graphs. In: Fulkerson, D.R. (ed.) Studies in Graph Theory, Part II. Studies in Mathematics, vol. 12, pp. 201–224. Math. Association of America, Washington (1975) Google Scholar
  26. 26.
    Grünbaum, B.: Acoptic polyhedra. In: Chazelle, B., Goodman, J.E., Pollack, R. (eds.) Advances in Discrete and Computational Geometry. Contemporary Mathematics, pp. 163–199. AMS, Providence (1998) Google Scholar
  27. 27.
    Grünbaum, B.: A starshaped polyhedron with no net. Geombinatorics 11, 43–48 (2001) MathSciNetMATHGoogle Scholar
  28. 28.
    Grünbaum, B.: No-net polyhedra. Geombinatorics 11, 111–114 (2002) MathSciNetMATHGoogle Scholar
  29. 29.
    Grünbaum, B.: Graphs of polyhedra; polyhedra as graphs. Discrete Math. 307(3–5), 445–463 (2007) MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Proceedings of Graph Drawing 2000, pp. 77–90 (2001) CrossRefGoogle Scholar
  31. 31.
    Hart, G.: Calculating canonical polyhedra. Math. Res. Educ. 6(3), 5–10 (1997) Google Scholar
  32. 32.
    Hong, S.-H., Nagamochi, H.: Extending Steinitz’s theorem to non-convex polyhedra. Technical report TR 2008-012, Department of Applied Mathematics and Physics, Kyoto University (2008) Google Scholar
  33. 33.
    Hong, S.-H., Nagamochi, H.: Convex drawings of graphs with non-convex boundary constraints. Discrete Appl. Math. 156, 2368–2380 (2008) MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Hong, S.-H., Nagamochi, H.: Star-shaped drawings of planar graphs. In: Proceedings of IWOCA 2007, pp. 78–92 (2008) Google Scholar
  35. 35.
    Hong, S.-H., Nagamochi, H.: Star-shaped drawings of graphs with fixed embedding and concave corner constraints. In: Proceedings of COCOON 2008. LNCS, vol. 5092, pp. 405–414 (2008) Google Scholar
  36. 36.
    Hong, S.-H., Nagamochi, H.: Upward star-shaped polyhedral graphs. In: Proceedings of ISAAC 2009, pp. 913–922 (2009) Google Scholar
  37. 37.
    Hong, S.-H., Nagamochi, H.: Convex drawings of hierarchical planar graphs and clustered planar graphs. J. Discrete Algorithms 8(3), 282–295 (2010) MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Hong, S.-H., Nagamochi, H.: An algorithm for constructing star-shaped drawings of plane graphs. Comput. Geom. 43(2), 191–206 (2010) MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Hong, S.-H., Nagamochi, H.: A linear-time algorithm for symmetric convex drawings of internally triconnected plane graphs. Algorithmica 58(2), 433–460 (2010) MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Hong, S.-H., Nagamochi, H.: A linear-time algorithm for star-shaped drawings of planar graphs with the minimum number of concave corners. Algorithmica. doi: 10.1007/s00453-011-9513-6
  41. 41.
    Hopcroft, J.E., Kahn, P.J.: A paradigm for robust geometric algorithms. Algorithmica 7, 339–380 (1992) MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM J. Comput. 2, 135–158 (1973) MathSciNetCrossRefGoogle Scholar
  43. 43.
    Joswig, M., Kaibel, V., Körner, F.: On the k-systems of a simple polytope. Isr. J. Math. 129, 109–117 (2002) MATHCrossRefGoogle Scholar
  44. 44.
    Kaibel, V.: Reconstructing a simple polytope from its graph. In: Jüger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization. LNCS, vol. 2570, pp. 105–118. Springer, Berlin (2002) Google Scholar
  45. 45.
    Kalai, G.: A simple way to tell a simple polytope from its graph. J. Comb. Theory, Ser. A 49, 381–383 (1988) MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Kalai, G.: Combinatorics and convexity. In: Proceedings of ICM, Zurich, pp. 1363–1374. Birkhäuser, Basel (1995) Google Scholar
  47. 47.
    Kalai, G.: Some aspects in the combinatorial theory of convex polytopes. In: Bisztriczky, T., et al. (eds.) Polytopes, Abstract Convex and Computational, pp. 205–230 (1995) Google Scholar
  48. 48.
    Kalai, G.: Polytope skeletons and paths. In: Handbook of Discrete and Computational Geometry. CRC Press, Boca Raton (1997) Google Scholar
  49. 49.
    Kepler, J.: Harmonices mundi. J. Planck, Linz (1619) Google Scholar
  50. 50.
    Klee, V., Kleinschmidt, P.: Polyhedral complexes and their relatives. In: Graham, R., Grotschel, M., Lovasz, L. (eds.) Handbook of Combinatorics, pp. 875–917. North-Holland, Amsterdam (1995) Google Scholar
  51. 51.
    Koebe, P.: Kontaktprobleme der Konformen Abbildung. Ber. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl. 88, 141–164 (1936) Google Scholar
  52. 52.
    Mani, P.: Automorphismen von Polyedrischen Graphen. Math. Ann. 192, 279–303 (1971) MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Maxwell, J.C.: On reciprocal figures and diagrams of forces. Philos. Mag. 4, 250–261 (1864) Google Scholar
  54. 54.
    McMullen, P., Schulte, E.: Abstract Regular Polytopes. Cambridge University Press, Cambridge (2002) MATHCrossRefGoogle Scholar
  55. 55.
    Miura, K., Nakano, S., Nishizeki, T.: Convex grid drawings of four-connected plane graphs. Int. J. Found. Comput. Sci. 17(5), 1031–1060 (2006) MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    Mohar, B.: A polynomial time circle packing algorithm. Discrete Math. 117, 257–263 (1993) MathSciNetMATHCrossRefGoogle Scholar
  57. 57.
    Mohar, B., Thomassen, C.: Graphs on Surfaces. Johns Hopkins University Press, Baltimore (2001) MATHGoogle Scholar
  58. 58.
    Ribó Mor, A.: Realization and counting problems for planar structures: Trees and linkages, polytopes and polyominoes. Ph.D. thesis, Freie Universität Berlin (2005) Google Scholar
  59. 59.
    Ribó Mor, A., Rote, G., Schulz, A.: Embedding 3-polytopes on a small grid. In: Proceedings of SoCG 2007, pp. 112–118 (2007) Google Scholar
  60. 60.
    Perles, M.A.: Results and problems on reconstruction of polytopes. Jerusalem (1970), unpublished Google Scholar
  61. 61.
    Poinsot, L.: Mémoire sur les polygones et les polyèdres. J. Èc. Polytech. 10, 16–18 (1810) Google Scholar
  62. 62.
    Richter-Gebert, J.: Realization Spaces of Polytopes. Lecture Notes in Mathematics, vol. 1643. Springer, Berlin (1996) Google Scholar
  63. 63.
    Schnyder, W., Trotter, W.: Convex drawings of planar graphs. Abstr. Am. Math. Soc. 13(5), 92T-05-135 (1992) Google Scholar
  64. 64.
    Schramm, O.: How to cage an egg. Invent. Math. 107, 543–560 (1992) MathSciNetMATHCrossRefGoogle Scholar
  65. 65.
    Schulz, A.: Drawing 3-polytopes with good vertex resolution. In: Proceedings of Graph Drawing 2009, pp. 33–44 (2010) CrossRefGoogle Scholar
  66. 66.
    Sugihara, K.: Machine Interpretation of Line Drawing. MIT Press, Cambridge (1986) Google Scholar
  67. 67.
    Steinitz, E.: Polyeder und Raumeinteilungen. In: Encyclopädie der mathematischen Wissenschaften, Band 3 (Geometrie), vol. 3AB12, pp. 1–139 (1922) Google Scholar
  68. 68.
    Steinitz, E., Rademacher, H.: Vorlesungen über die Theorie der Polyeder. Springer, Berlin (1934) Google Scholar
  69. 69.
    Thomassen, C.: Plane representations of graphs. In: Bondy, J.A., Murty, U.S.R. (eds.) Progress in Graph Theory, pp. 43–69. Academic Press, New York (1984) Google Scholar
  70. 70.
    Thurston, W.P.: Geometry and Topology of 3-Manifolds. Princeton Lecture Notes. Princeton University, Princeton (1977–1981) Google Scholar
  71. 71.
    Truemper, K.: On the delta-Wye reduction for planar graphs. J. Graph Theory 13, 141–148 (1989) MathSciNetMATHCrossRefGoogle Scholar
  72. 72.
    Tutte, W.T.: Convex representations of graphs. Proc. Lond. Math. Soc. 10(3), 304–320 (1960) MathSciNetMATHCrossRefGoogle Scholar
  73. 73.
    Tutte, W.T.: How to draw a graph. Proc. Lond. Math. Soc. 13, 743–768 (1963) MathSciNetMATHCrossRefGoogle Scholar
  74. 74.
    Tutte, W.T.: Graph Theory. Encyclopedia of Mathematics and Its Applications, vol. 21, Addison-Wesley, Reading (1984) MATHGoogle Scholar
  75. 75.
    Whiteley, W.: Realizability of polyhedra. Struct. Topol. 1, 46–58 (1979) MathSciNetMATHGoogle Scholar
  76. 76.
    Whiteley, W.: Motions and stresses of projected polyhedra. Struct. Topol. 7, 13–38 (1982) MathSciNetMATHGoogle Scholar
  77. 77.
    Ziegler, G.M.: Lectures on Polytopes. GTM, vol. 152. Springer, Berlin (1995) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Information TechnologiesUniversity of SydneySydneyAustralia
  2. 2.Graduate School of InformaticsKyoto UniversityKyotoJapan

Personalised recommendations