Algorithmica

, 61:1022

# Extending Steinitz’s Theorem to Upward Star-Shaped Polyhedra and Spherical Polyhedra

Article

## Abstract

In 1922, Steinitz’s theorem gave a complete characterization of the topological structure of the vertices, edges, and faces of convex polyhedra as triconnected planar graphs. In this paper, we generalize Steinitz’s theorem to non-convex polyhedra. More specifically, we introduce a new class of polyhedra, wider than convex polyhedra, called upward star-shaped polyhedra and spherical polyhedra, and present graph-theoretic characterization for both polyhedra. Upward star-shaped polyhedra are polyhedra where each face is star-shaped, all faces except the bottom face are visible from a view point, and any two faces sharing two vertices are non-coplanar. Spherical polyhedra are non-singular, non-coplanar polyhedra with no holes.

We first present a graph-theoretic characterization of upward star-shaped polyhedra, i.e., characterization of upward star-shaped polyhedral graphs, which are the vertex-edge graphs (or 1-skeleton) of the upward star-shaped polyhedra. Roughly speaking, they correspond to biconnected planar graphs with special conditions. The proof of the characterization leads to an algorithm that constructs an upward star-shaped polyhedron with n vertices in O(n 1.5) time. Moreover, one can test whether a given plane graph is an upward star-shaped polyhedral graph in linear time.

We then present a graph-theoretic characterization of spherical polyhedra for planar cubic graphs, and planar graphs with maximum face size 4. We also formally define the Polyhedra Realizability Problem, and discuss its reducibility.

Our result is the first graph-theoretic characterization of non-convex polyhedra, which solves an open problem posed by Grünbaum (Discrete Math. 307(3–5), 445–463, 2007), and a generalization of Steinitz’s theorem (Polyeder und Raumeinteilungen, 1922), which characterized convex polyhedra as triconnected planar graphs.

### Keywords

Graph drawing Steinitz’s theorem Convex drawing Planar graphs Biconnected graphs Triconnected graphs Polyhedra Polytopes Convex polytopes Non-convex polytopes Polyhedral graphs Upward star-shaped polyhedra Spherical polyhedra

### References

1. 1.
Andreev, E.M.: On convex polyhedra in Lobacevskii spaces. Math. USSR Sb. 10(3), 413–440 (1970)
2. 2.
Barnette, D., Grünbaum, B.: On Steinitz’s theorem concerning convex 3-polytopes and on some properties of 3-connected graphs. In: Many Facets of Graph Theory. Lecture Notes in Mathematics, vol. 110, pp. 27–39. Springer, Berlin (1969)
3. 3.
Barnette, D.W., Grünbaum, B.: Preassigning the shape of a face. Pac. J. Math. 32, 299–302 (1970)
4. 4.
Blind, R., Mani, P.: On puzzles and polytope isomorphisms. Aequ. Math. 34, 287–297 (1987)
5. 5.
Bonichon, N., Felsner, S., Mosbah, M.: Convex drawings of 3-connected plane graphs. In: Proceedings of Graph Drawing 2004. LNCS, vol. 3383, pp. 60–70 (2005)
6. 6.
Chiba, N., Yamanouchi, T., Nishizeki, T.: Linear algorithms for convex drawings of planar graphs. In: Progress in Graph Theory, pp. 153–173. Academic Press, New York (1984) Google Scholar
7. 7.
Chrobak, M., Kant, G.: Convex grid drawings of 3-connected planar graphs. Int. J. Comput. Geom. Appl. 7, 211–223 (1997)
8. 8.
Chrobak, M., Goodrich, M.T., Tamassia, R.: Convex drawings of graphs in two and three dimensions. In: Proceedings of SoCG 1996, pp. 319–328 (1996) Google Scholar
9. 9.
Connelly, R.: Rigidity and energy. Invent. Math. 66(1), 11–33 (1982)
10. 10.
Coxeter, H.S.M.: Regular Polytopes. Dover Publications, New York (1973) Google Scholar
11. 11.
Crapo, H., Whiteley, W.: Statics of frameworks and motions of panel structures, a projective geometric introduction. Struct. Topol. 6, 42–82 (1982)
12. 12.
Crapo, H., Whiteley, W.: Plane stresses and projected polyhedra I: the basic pattern. Struct. Topol. 20, 55–68 (1993)
13. 13.
Cremona, L.: Graphical Statics. Oxford University Press, Oxford (1890) (Transl. of Le figure reciproche nelle statica graphica, Milano, 1872)
14. 14.
Cromwell, P.R.: Polyhedra. Cambridge University Press, Cambridge (1999)
15. 15.
Das, G., Goodrich, M.T.: On the complexity of optimization problems for 3-dimensional convex polyhedra and decision trees. Comput. Geom. 8, 123–137 (1997)
16. 16.
Demaine, E., Erickson, J.: Open problems on polytope reconstruction. Manuscript (1999) Google Scholar
17. 17.
Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25(5), 956–997 (1996)
18. 18.
Di Battista, G., Tamassia, R.: On-line maintenance of triconnected components with SPQR-trees. Algorithmica 15, 302–318 (1996)
19. 19.
Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, New York (1999)
20. 20.
Di Battista, G., Frati, F., Patrignani, M.: Non-convex representations of graphs. In: Proceedings of Graph Drawing 2008, pp. 390–395 (2009)
21. 21.
Eades, P., Garvan, P.: Drawing stressed planar graphs in three dimensions. In: Proceedings of Graph Drawing 1995. LNCS, vol. 1027, pp. 212–223 (1995)
22. 22.
23. 23.
Grünbaum, B.: Convex Polytopes. Interscience, London (1967)
24. 24.
Grünbaum, B.: Polytopes, graphs, and complexes. Bull. Am. Math. Soc. 76, 1131–1201 (1970)
25. 25.
Grünbaum, B.: Polytopal graphs. In: Fulkerson, D.R. (ed.) Studies in Graph Theory, Part II. Studies in Mathematics, vol. 12, pp. 201–224. Math. Association of America, Washington (1975) Google Scholar
26. 26.
Grünbaum, B.: Acoptic polyhedra. In: Chazelle, B., Goodman, J.E., Pollack, R. (eds.) Advances in Discrete and Computational Geometry. Contemporary Mathematics, pp. 163–199. AMS, Providence (1998) Google Scholar
27. 27.
Grünbaum, B.: A starshaped polyhedron with no net. Geombinatorics 11, 43–48 (2001)
28. 28.
Grünbaum, B.: No-net polyhedra. Geombinatorics 11, 111–114 (2002)
29. 29.
Grünbaum, B.: Graphs of polyhedra; polyhedra as graphs. Discrete Math. 307(3–5), 445–463 (2007)
30. 30.
Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Proceedings of Graph Drawing 2000, pp. 77–90 (2001)
31. 31.
Hart, G.: Calculating canonical polyhedra. Math. Res. Educ. 6(3), 5–10 (1997) Google Scholar
32. 32.
Hong, S.-H., Nagamochi, H.: Extending Steinitz’s theorem to non-convex polyhedra. Technical report TR 2008-012, Department of Applied Mathematics and Physics, Kyoto University (2008) Google Scholar
33. 33.
Hong, S.-H., Nagamochi, H.: Convex drawings of graphs with non-convex boundary constraints. Discrete Appl. Math. 156, 2368–2380 (2008)
34. 34.
Hong, S.-H., Nagamochi, H.: Star-shaped drawings of planar graphs. In: Proceedings of IWOCA 2007, pp. 78–92 (2008) Google Scholar
35. 35.
Hong, S.-H., Nagamochi, H.: Star-shaped drawings of graphs with fixed embedding and concave corner constraints. In: Proceedings of COCOON 2008. LNCS, vol. 5092, pp. 405–414 (2008) Google Scholar
36. 36.
Hong, S.-H., Nagamochi, H.: Upward star-shaped polyhedral graphs. In: Proceedings of ISAAC 2009, pp. 913–922 (2009) Google Scholar
37. 37.
Hong, S.-H., Nagamochi, H.: Convex drawings of hierarchical planar graphs and clustered planar graphs. J. Discrete Algorithms 8(3), 282–295 (2010)
38. 38.
Hong, S.-H., Nagamochi, H.: An algorithm for constructing star-shaped drawings of plane graphs. Comput. Geom. 43(2), 191–206 (2010)
39. 39.
Hong, S.-H., Nagamochi, H.: A linear-time algorithm for symmetric convex drawings of internally triconnected plane graphs. Algorithmica 58(2), 433–460 (2010)
40. 40.
Hong, S.-H., Nagamochi, H.: A linear-time algorithm for star-shaped drawings of planar graphs with the minimum number of concave corners. Algorithmica. doi:
41. 41.
Hopcroft, J.E., Kahn, P.J.: A paradigm for robust geometric algorithms. Algorithmica 7, 339–380 (1992)
42. 42.
Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM J. Comput. 2, 135–158 (1973)
43. 43.
Joswig, M., Kaibel, V., Körner, F.: On the k-systems of a simple polytope. Isr. J. Math. 129, 109–117 (2002)
44. 44.
Kaibel, V.: Reconstructing a simple polytope from its graph. In: Jüger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization. LNCS, vol. 2570, pp. 105–118. Springer, Berlin (2002) Google Scholar
45. 45.
Kalai, G.: A simple way to tell a simple polytope from its graph. J. Comb. Theory, Ser. A 49, 381–383 (1988)
46. 46.
Kalai, G.: Combinatorics and convexity. In: Proceedings of ICM, Zurich, pp. 1363–1374. Birkhäuser, Basel (1995) Google Scholar
47. 47.
Kalai, G.: Some aspects in the combinatorial theory of convex polytopes. In: Bisztriczky, T., et al. (eds.) Polytopes, Abstract Convex and Computational, pp. 205–230 (1995) Google Scholar
48. 48.
Kalai, G.: Polytope skeletons and paths. In: Handbook of Discrete and Computational Geometry. CRC Press, Boca Raton (1997) Google Scholar
49. 49.
Kepler, J.: Harmonices mundi. J. Planck, Linz (1619) Google Scholar
50. 50.
Klee, V., Kleinschmidt, P.: Polyhedral complexes and their relatives. In: Graham, R., Grotschel, M., Lovasz, L. (eds.) Handbook of Combinatorics, pp. 875–917. North-Holland, Amsterdam (1995) Google Scholar
51. 51.
Koebe, P.: Kontaktprobleme der Konformen Abbildung. Ber. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl. 88, 141–164 (1936) Google Scholar
52. 52.
Mani, P.: Automorphismen von Polyedrischen Graphen. Math. Ann. 192, 279–303 (1971)
53. 53.
Maxwell, J.C.: On reciprocal figures and diagrams of forces. Philos. Mag. 4, 250–261 (1864) Google Scholar
54. 54.
McMullen, P., Schulte, E.: Abstract Regular Polytopes. Cambridge University Press, Cambridge (2002)
55. 55.
Miura, K., Nakano, S., Nishizeki, T.: Convex grid drawings of four-connected plane graphs. Int. J. Found. Comput. Sci. 17(5), 1031–1060 (2006)
56. 56.
Mohar, B.: A polynomial time circle packing algorithm. Discrete Math. 117, 257–263 (1993)
57. 57.
Mohar, B., Thomassen, C.: Graphs on Surfaces. Johns Hopkins University Press, Baltimore (2001)
58. 58.
Ribó Mor, A.: Realization and counting problems for planar structures: Trees and linkages, polytopes and polyominoes. Ph.D. thesis, Freie Universität Berlin (2005) Google Scholar
59. 59.
Ribó Mor, A., Rote, G., Schulz, A.: Embedding 3-polytopes on a small grid. In: Proceedings of SoCG 2007, pp. 112–118 (2007) Google Scholar
60. 60.
Perles, M.A.: Results and problems on reconstruction of polytopes. Jerusalem (1970), unpublished Google Scholar
61. 61.
Poinsot, L.: Mémoire sur les polygones et les polyèdres. J. Èc. Polytech. 10, 16–18 (1810) Google Scholar
62. 62.
Richter-Gebert, J.: Realization Spaces of Polytopes. Lecture Notes in Mathematics, vol. 1643. Springer, Berlin (1996) Google Scholar
63. 63.
Schnyder, W., Trotter, W.: Convex drawings of planar graphs. Abstr. Am. Math. Soc. 13(5), 92T-05-135 (1992) Google Scholar
64. 64.
Schramm, O.: How to cage an egg. Invent. Math. 107, 543–560 (1992)
65. 65.
Schulz, A.: Drawing 3-polytopes with good vertex resolution. In: Proceedings of Graph Drawing 2009, pp. 33–44 (2010)
66. 66.
Sugihara, K.: Machine Interpretation of Line Drawing. MIT Press, Cambridge (1986) Google Scholar
67. 67.
Steinitz, E.: Polyeder und Raumeinteilungen. In: Encyclopädie der mathematischen Wissenschaften, Band 3 (Geometrie), vol. 3AB12, pp. 1–139 (1922) Google Scholar
68. 68.
Steinitz, E., Rademacher, H.: Vorlesungen über die Theorie der Polyeder. Springer, Berlin (1934) Google Scholar
69. 69.
Thomassen, C.: Plane representations of graphs. In: Bondy, J.A., Murty, U.S.R. (eds.) Progress in Graph Theory, pp. 43–69. Academic Press, New York (1984) Google Scholar
70. 70.
Thurston, W.P.: Geometry and Topology of 3-Manifolds. Princeton Lecture Notes. Princeton University, Princeton (1977–1981) Google Scholar
71. 71.
Truemper, K.: On the delta-Wye reduction for planar graphs. J. Graph Theory 13, 141–148 (1989)
72. 72.
Tutte, W.T.: Convex representations of graphs. Proc. Lond. Math. Soc. 10(3), 304–320 (1960)
73. 73.
Tutte, W.T.: How to draw a graph. Proc. Lond. Math. Soc. 13, 743–768 (1963)
74. 74.
Tutte, W.T.: Graph Theory. Encyclopedia of Mathematics and Its Applications, vol. 21, Addison-Wesley, Reading (1984)
75. 75.
Whiteley, W.: Realizability of polyhedra. Struct. Topol. 1, 46–58 (1979)
76. 76.
Whiteley, W.: Motions and stresses of projected polyhedra. Struct. Topol. 7, 13–38 (1982)
77. 77.
Ziegler, G.M.: Lectures on Polytopes. GTM, vol. 152. Springer, Berlin (1995)