Algorithmica

, Volume 64, Issue 1, pp 38–55 | Cite as

Parameterized Modal Satisfiability

Article

Abstract

We investigate the parameterized computational complexity of the satisfiability problem for modal logic and attempt to pinpoint relevant structural parameters which cause the problem’s combinatorial explosion, beyond the number of propositional variables v. To this end we study the modality depth, a natural measure which has appeared in the literature, and show that, even though modal satisfiability parameterized by v and the modality depth is FPT, the running time’s dependence on the parameters is a tower of exponentials (unless P = NP). To overcome this limitation we propose possible alternative parameters, namely diamond dimension and modal width. We show fixed-parameter tractability results using these measures where the exponential dependence on the parameters is much milder (doubly and singly exponential respectively) than in the case of modality depth thus leading to FPT algorithms for modal satisfiability with much more reasonable running times. We also give lower bound arguments which prove that our algorithms cannot be improved significantly unless the Exponential Time Hypothesis fails.

Keywords

Modal logic Parameterized complexity Satisfiability problems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blackburn, P., van Benthem, J.F.A.K., Wolter, F.: Handbook of Modal Logic. Studies in Logic and Practical Reasoning, vol. 3. Elsevier, New York (2006) Google Scholar
  2. 2.
    Chagrov, A.V., Rybakov, M.N.: How many variables does one need to prove PSPACE-hardness of modal logics. In: Balbiani, P., Suzuki, N.-Y., Wolter, F., Zakharyaschev, M. (eds.) Advances in Modal Logic, pp. 71–82. King’s College Publications, London (2002) Google Scholar
  3. 3.
    Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1999) CrossRefGoogle Scholar
  5. 5.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press, Cambridge (1995) MATHGoogle Scholar
  6. 6.
    Flum, J., Grädel, E., Wilke, T.: Logic and Automata: History and Perspectives. Amsterdam Univ Press, Amsterdam (2008) MATHGoogle Scholar
  7. 7.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, New York (2006) Google Scholar
  8. 8.
    Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic revisited. Ann. Pure Appl. Log. 130(1–3), 3–31 (2004) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Grohe, M.: Logic, graphs, and algorithms. Electron. Colloq. Comput. Complex. 14, 091 (2007) Google Scholar
  10. 10.
    Halpern, J.Y.: The effect of bounding the number of primitive propositions and the depth of nesting on the complexity of modal logic. Artif. Intell. 75(2), 361–372 (1995) MATHCrossRefGoogle Scholar
  11. 11.
    Halpern, J.Y., Moses, Y.: A guide to completeness and complexity for modal logics of knowledge and belief. Artif. Intell. 54(3), 319–379 (1992) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Halpern, J.Y.: L.C. Rêgo. Characterizing the NP-PSPACE gap in the satisfiability problem for modal logic. J. Log. Comput. 17(4), 795 (2007) MATHCrossRefGoogle Scholar
  13. 13.
    Ladner, R.E.: The computational complexity of provability in systems of modal propositional logic. SIAM J. Comput. 6(3), 467–480 (1977) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Nguyen, L.A.: On the complexity of fragments of modal logics. Adv. Modal Logic 5, 249–268 (2005) Google Scholar
  15. 15.
    Spaan, E.: Complexity of modal logics. PhD thesis, University of Amsterdam (1993) Google Scholar
  16. 16.
    Woeginger, G.: Exact algorithms for NP-hard problems: A survey. In Combinatorial Optimization-Eureka, You Shrink! Lecture Notes in Computer Science, vol. 2570, pp. 185–207. Springer, Berlin (2003) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Antonis Achilleos
    • 1
  • Michael Lampis
    • 1
  • Valia Mitsou
    • 1
  1. 1.Computer Science DepartmentGraduate Center, City University of New YorkNew YorkUSA

Personalised recommendations