, 61:971 | Cite as

Augmenting the Edge Connectivity of Planar Straight Line Graphs to Three

  • Marwan Al-Jubeh
  • Mashhood Ishaque
  • Kristóf Rédei
  • Diane L. Souvaine
  • Csaba D. TóthEmail author
  • Pavel Valtr


We characterize the planar straight line graphs (Pslgs) that can be augmented to 3-connected and 3-edge-connected Pslgs, respectively. We show that if a Pslg with n vertices can be augmented to a 3-edge-connected Pslg, then at most 2n−2 new edges are always sufficient and sometimes necessary for the augmentation. If the input Pslg is, in addition, already 2-edge-connected, then n−2 new edges are always sufficient and sometimes necessary for the augmentation to a 3-edge-connected Pslg.


Connectivity augmentation Planar straight line graph Graph embedding 


  1. 1.
    Abellanas, M., García, A., Hurtado, F., Tejel, J., Urrutia, J.: Augmenting the connectivity of geometric graphs. Comput. Geom. Theory Appl. 40(3), 220–230 (2008) zbMATHGoogle Scholar
  2. 2.
    Chazelle, B.: On the convex layers of a planar set. IEEE Trans. Inf. Theory IT-31(4), 509–517 (1985) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cheng, E., Jordán, T.: Successive edge-connectivity augmentation problems. Math. Program. 84, 577–593 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Eswaran, K.P., Tarjan, R.E.: Augmentation problems. SIAM J. Comput. 5(4), 653–665 (1976) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Fialko, S., Mutzel, P.: A new approximation algorithm for the planar augmentation problem. In: Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, pp. 260–269. ACM Press, New York (1998) Google Scholar
  6. 6.
    Frank, A.: Augmenting graphs to meet edge-connectivity requirements. SIAM J. Discrete Math. 5(1), 22–53 (1992) CrossRefGoogle Scholar
  7. 7.
    Galil, Z., Italiano, G.F.: Maintaining the 3-edge-connected components of a graph on-line. SIAM J. Comput. 22(1), 11–28 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    García, A., Hurtado, F., Huemer, C., Tejel, J., Valtr, P.: On triconnected and cubic plane graphs on given point sets. Comput. Geom. Theory Appl. 42, 913–922 (2009) zbMATHGoogle Scholar
  9. 9.
    García, A., Hurtado, F., Noy, M., Tejel, J.: Augmenting the connectivity of outerplanar graphs. Algorithmica 56(2), 160–179 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Goodrich, M.T., Tamassia, R.: Dynamic ray shooting and shortest paths in planar subdivisions via balanced geodesic triangulations. J. Algorithms 23, 51–73 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Graham, R.L.: An efficient algorithm for determining the convex hull of a finite planar set. Inf. Process. Lett. 1, 132–133 (1972) zbMATHCrossRefGoogle Scholar
  12. 12.
    Guibas, L., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.E.: Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica 2, 209–233 (1987) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Gutwenger, C., Mutzel, P., Zey, B.: On the hardness and approximability of planar biconnectivity augmentation. In: Proc. Conference on Combinatorics and Computing. Lecture Notes in Computer Science, vol. 5609, pp. 249–257. Springer, Berlin (2009) CrossRefGoogle Scholar
  14. 14.
    Hershberger, J., Suri, S.: Applications of a semi-dynamic convex hull algorithm. BIT Numer. Math. 32, 249–267 (1992) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Hsu, T.-S., Ramachandran, V.: On finding a minimum augmentation to biconnect a graph. SIAM J. Comput. 22(5), 889–912 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Hsu, T.-S.: Simpler and faster biconnectivity augmentation. J. Algorithms 45(1), 55–71 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Jackson, B., Jordán, T.: Independence free graphs and vertex connectivity augmentation. J. Comb. Theory, Ser. B 94, 31–77 (2005) zbMATHCrossRefGoogle Scholar
  18. 18.
    Kant, G.: Augmenting outerplanar graphs. J. Algorithms 21, 1–25 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Kant, G., Bodlaender, H.L.: Planar graph augmentation problems. In: Proceedings of the 2nd Workshop on Algorithms and Data Structures. Lecture Notes in Computer Science, vol. 519, pp. 286–298. Springer, Berlin (1991) Google Scholar
  20. 20.
    Kortsarz, G., Nutov, Z.: Approximating minimum cost connectivity problems. In: Gonzalez, T.F. (ed.) Handbook of Approximation Algorithms and Metaheuristics. CRC Press, Boca Raton (2007) (Chap. 58) Google Scholar
  21. 21.
    Lovász, L.: Combinatorial Problems and Exercises. North-Holland, Amsterdam (1979) zbMATHGoogle Scholar
  22. 22.
    Mader, W.: A reduction method for edge-connectivity in graphs. Ann. Discrete Math. 3, 145–164 (1978) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    McCallum, D., Avis, D.: A linear algorithm for finding the convex hull of a simple polygon. Inf. Process. Lett. 9(5), 201 (1979) MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Nagamochi, H., Eades, P.: An edge-splitting algorithm in planar graphs. J. Comb. Optim. 7(2), 137–159 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Nagamochi, H., Ibaraki, T.: Augmenting edge-connectivity over the entire range in \(\tilde {O}(nm)\) time. J. Algorithms 30, 253–301 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Nagamochi, H., Ibaraki, T.: Graph connectivity and its augmentation: applications of MA orderings. Discrete Appl. Math. 123, 447–472 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Plesník, J.: Minimum block containing a given graph. Arch. Math. 27(6), 668–672 (1976) MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    La Poutré, J.A., van Leeuwen, J., Overmars, M.H.: Maintenance of 2- and 3-edge-connected components of graphs I. Discrete Math. 114, 329–359 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    La Poutré, J.A.: Maintenance of 2- and 3-edge-connected components of graphs II. SIAM J. Comput. 29, 1521–1549 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Texts and Monographs in Computer Science. Springer, Berlin (1985) Google Scholar
  31. 31.
    Rosenthal, A., Goldner, A.: Smallest augmentations to biconnect a graph. SIAM J. Comput. 6, 55–66 (1977) MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Rutter, I., Wolff, A.: Augmenting the connectivity of planar and geometric graphs. Electron. Notes Discrete Math. 31, 53–56 (2008) MathSciNetCrossRefGoogle Scholar
  33. 33.
    Souvaine, D.L., Tóth, C.D.: A vertex-face assignment for plane graphs. Comput. Geom. Theory Appl. 42(5), 388–394 (2009) zbMATHGoogle Scholar
  34. 34.
    Tóth, C.D.: Connectivity augmentation in planar straight line graphs. Eur. J. Comb. (2010, to appear).
  35. 35.
    Tutte, W.T.: Connectivity in Graphs. University of Toronto Press, Toronto (1966) zbMATHGoogle Scholar
  36. 36.
    Végh, L.: Augmenting undirected node-connectivity by one. In: Proceedings of the 42nd Symposium on Theory of Computing, pp. 563–572. ACM Press, New York (2010) Google Scholar
  37. 37.
    Watanabe, T., Nakamura, A.: Edge-connectivity augmentation problems. J. Comput. Syst. Sci. 35(1), 96–144 (1987) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Marwan Al-Jubeh
    • 1
  • Mashhood Ishaque
    • 1
  • Kristóf Rédei
    • 1
  • Diane L. Souvaine
    • 1
  • Csaba D. Tóth
    • 2
    Email author
  • Pavel Valtr
    • 3
  1. 1.Department of Computer ScienceTufts UniversityMedfordUSA
  2. 2.Department of MathematicsUniversity of CalgaryCalgaryCanada
  3. 3.Department of Applied Mathematics and Institute for Theoretical Computer ScienceCharles UniversityPragueCzech Republic

Personalised recommendations