Algorithmica

, Volume 64, Issue 1, pp 112–125 | Cite as

Parameterized Complexity Results for General Factors in Bipartite Graphs with an Application to Constraint Programming

  • Gregory Gutin
  • Eun Jung Kim
  • Arezou Soleimanfallah
  • Stefan Szeider
  • Anders Yeo
Article
  • 159 Downloads

Abstract

The NP-hard general factor problem asks, given a graph and for each vertex a list of integers, whether the graph has a spanning subgraph where each vertex has a degree that belongs to its assigned list. The problem remains NP-hard even if the given graph is bipartite with partition UV, and each vertex in U is assigned the list {1}; this subproblem appears in the context of constraint programming as the consistency problem for the extended global cardinality constraint.

We show that this subproblem is fixed-parameter tractable when parameterized by the size of the second partite set V. More generally, we show that the general factor problem for bipartite graphs, parameterized by |V|, is fixed-parameter tractable as long as all vertices in U are assigned lists of length 1, but becomes \(\text {\normalfont W[1]}\)-hard if vertices in U are assigned lists of length at most 2. We establish fixed-parameter tractability by reducing the problem instance to a bounded number of acyclic instances, each of which can be solved in polynomial time by dynamic programming.

Keywords

General factor Global constraint Fixed-parameter tractable 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beldiceanu, N., Carlsson, M., Rampon, J.-X.: Global constraint catalog. Technical Report T2005:08, SICS, SE-16 429 Kista, Sweden (Aug. 2006). On-line version at http://www.emn.fr/x-info/sdemasse/gccat/
  2. 2.
    Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Quimper, C.-G., Walsh, T.: The parameterized complexity of global constraints. In: Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13–17, 2008, pp. 235–240. AAAI Press, Menlo Park (2008) Google Scholar
  3. 3.
    Bessiére, C., Hebrard, E., Hnich, B., Walsh, T.: The tractability of global constraints. In: Wallace, M. (ed.) Principles and Practice of Constraint Programming (CP 2004). Lecture Notes in Computer Science, vol. 3258, pp. 716–720. Springer, Berlin (2004) CrossRefGoogle Scholar
  4. 4.
    Bourdais, S., Galinier, P., Pesant, G.: HIBISCUS: a constraint programming application to staff scheduling in health care. In: Rossi, F. (ed.) Principles and Practice of Constraint Programming (CP 2003). Lecture Notes in Computer Science, vol. 2833, pp. 153–167. Springer, Berlin (2003) CrossRefGoogle Scholar
  5. 5.
    Cornuéjols, G.: General factors of graphs. J. Comb. Theory, Ser. B 45(2), 185–198 (1988) MATHCrossRefGoogle Scholar
  6. 6.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, New York (1999) Google Scholar
  7. 7.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series, vol. 14. Springer, Berlin (2006) Google Scholar
  8. 8.
    Gaspers, S., Szeider, S.: Kernels for global constraints. In: Walsh, T. (ed.) Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI 2011, pp. 1033–1038. AAAI Press/IJCAI, Menlo Park (2011) Google Scholar
  9. 9.
    Lovász, L.: The factorization of graphs. In: Combinatorial Structures and Their Applications, Proc. Calgary Internat. Conf., Calgary, Alta., 1969, pp. 243–246. Gordon and Breach, New York (1970) Google Scholar
  10. 10.
    Lovász, L.: The factorization of graphs. II. Acta Math. Acad. Sci. Hung. 23, 223–246 (1972) MATHCrossRefGoogle Scholar
  11. 11.
    Mathieson, L., Szeider, S.: Editing graphs to satisfy degree constraints: A parameterized approach. J. Comput. Syst. Sci. (2011, to appear) Google Scholar
  12. 12.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, Oxford (2006) MATHCrossRefGoogle Scholar
  13. 13.
    Pietrzak, K.: On the parameterized complexity of the fixed alphabet shortest common supersequence and longest common subsequence problems. J. Comput. Syst. Sci. 67(4), 757–771 (2003) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Régin, J.-C., Gomes, C.: The cardinality matrix constraint. In: Wallace, M. (ed.) Principles and Practice of Constraint Programming (CP 2004). Lecture Notes in Computer Science, vol. 3258, pp. 572–587. Springer, Berlin (2004) CrossRefGoogle Scholar
  15. 15.
    Samer, M., Szeider, S.: Tractable cases of the extended global cardinality constraint. In: Harland, J., Manyem, P. (eds.) Proceedings of CATS 2008, Computing: The Australasian Theory Symposium, University of Wollongong, New South Wales, Australia, January 22–25, 2008. Conferences in Research and Practice in Information Technology, vol. 77, pp. 67–74. Austr. Comput. Soc., Sydney (2008). Full version appeared in Constraints 16(1), 1–24 (2011) Google Scholar
  16. 16.
    Szeider, S.: Monadic second order logic on graphs with local cardinality constraints. ACM Trans. Comput. Log. 12(2), article 12 (2011) MathSciNetCrossRefGoogle Scholar
  17. 17.
    Szeider, S.: Limits of preprocessing. In: Proceedings of the Twenty-Fifth Conference on Artificial Intelligence, AAAI 2011 (2011). To appear Google Scholar
  18. 18.
    van Hoeve, W.-J., Katriel, I.: Global constraints. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming. Elsevier, Amsterdam (2006). Chap. 6 Google Scholar
  19. 19.
    van Hoeve, W.J., Pesant, G., Rousseau, L.-M., Sabharwal, A.: Revisiting the sequence constraint. In: Benhamou, F. (ed.) Principles and Practice of Constraint Programming—CP 2006, Proceedings of 12th International Conference, Nantes, France, September 25–29, 2006. Lecture Notes in Computer Science, vol. 4204, pp. 620–634. Springer, Berlin (2006) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Gregory Gutin
    • 1
  • Eun Jung Kim
    • 2
  • Arezou Soleimanfallah
    • 1
  • Stefan Szeider
    • 3
  • Anders Yeo
    • 1
  1. 1.Department of Computer Science, Royal HollowayUniversity of LondonEghamUK
  2. 2.AlGCo project-team, CNRSLIRMMMontpellierFrance
  3. 3.Institute of Information SystemsVienna University of TechnologyViennaAustria

Personalised recommendations