, Volume 63, Issue 1–2, pp 363–397 | Cite as

Interval Partitions and Polynomial Factorization

  • Joachim von zur Gathen
  • Daniel PanarioEmail author
  • Bruce Richmond


The fastest algorithms for factoring a univariate polynomial f of degree n over a finite field use a baby-step/giant-step approach. The set {1,…,n} of potential factor degrees is partitioned into intervals. In a first stage, for each interval the product of all irreducible factors with degree in the interval is determined, generalizing the method of Cantor & Zassenhaus. In a second stage, each polynomial corresponding to a multi-factor interval—containing two or more irreducible factors—is completely factored. The goal in this work is to analyze the behavior of this algorithm on uniformly random squarefree input polynomials, for various partitions. To this end, we study several parameters such as the expected number of multi-factor intervals, the expected number of irreducible factors with degrees lying in multi-factor intervals, the number of gcds executed in the factoring process, the expected total degree among the irreducible factors with degrees in multi-factor intervals, and the probability of a polynomial to have no multi-factor interval. We concentrate on partitions with polynomially growing interval sizes, and determine the partition that minimizes the expected number of gcds.


Polynomial factorization Finite fields Average-case analysis Generating functions Asymptotic analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions. Dover, New York (1970) Google Scholar
  2. 2.
    Bonorden, O., von zur Gathen, J., Gerhard, J., Müller, O., Nöcker, M.: Factoring a binary polynomial of degree over one million. ACM SIGSAM Bull. 35(1), 16–18 (2001) zbMATHCrossRefGoogle Scholar
  3. 3.
    Brent, R.P., Kung, H.-T.: Fast algorithms for manipulating formal power series. J. Assoc. Comput. Mach. 25, 581–595 (1978) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Brent, R.P., Zimmermann, P.: A multi-level blocking distinct-degree factorization algorithm. In: Mullen, G.L., Panario, D., Shparlinski, I. (eds.) Proc. Fq8, Melbourne, Australia. Contemporary Mathematics, vol. 461, pp. 47–58. Am. Math. Soc., Providence (2008) Google Scholar
  5. 5.
    Cantor, D.G., Zassenhaus, H.: A new algorithm for factoring polynomials over finite fields. Math. Comput. 36, 587–592 (1981) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Darboux, G.: Mémoires sur l’approximation des fonctions de trés-grands nombres, et sur une classe étendue de développements en série. Journal de Mathématiques Pures et Appliquées 4, 5–56, 377–416 (1878) Google Scholar
  7. 7.
    Flajolet, P., Fusy, É., Gourdon, X., Panario, D., Pouyanne, N.: A hybrid of Darboux’s method and singularity analysis in combinatorial asymptotics. Electron. J. Comb. 13, R103 (2006) MathSciNetGoogle Scholar
  8. 8.
    Flajolet, P., Gourdon, X., Panario, D.: The complete analysis of a polynomial factorization algorithm over finite fields. J. Algorithms 40, 37–81 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Flajolet, P., Odlyzko, A.: Singularity analysis of generating functions. SIAM J. Discrete Math. 3(2), 216–240 (1990) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2008) Google Scholar
  11. 11.
    Gourdon, X.: Combinatoire, algorithmique et géométrie des polynômes. Thèse, École Polytechnique (1996) Google Scholar
  12. 12.
    Graham, R., Knuth, D.E., Patashnik, O.: Concrete Mathematics, 2nd edn. Addison-Wesley, Reading (1994) zbMATHGoogle Scholar
  13. 13.
    Kaltofen, E., Shoup, V.: Subquadratic-time factorization of polynomials over finite fields. Math. Comput. 67, 1179–1197 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Kedlaya, K.S., Umans, C.: Fast modular composition in any characteristic. In: 49th Annual IEEE Symposium on Foundations of Computer Science, pp. 146–155 (2008) CrossRefGoogle Scholar
  15. 15.
    Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and its Applications, vol. 20. Addison-Wesley, Reading (1983) zbMATHGoogle Scholar
  16. 16.
    Odlyzko, A.: Asymptotic enumeration methods. In: Graham, R., Grötschel, M., Lovász, L. (eds.) Handbook of Combinatorics, vol. 2, pp. 1063–1229. Elsevier, Amsterdam (1995) Google Scholar
  17. 17.
    Olver, F.: Asymptotics and Special Functions. AKP Classics. AK Peters, Wellesley (1997) zbMATHGoogle Scholar
  18. 18.
    Panario, D.: What do random polynomials over finite fields look like. In: Mullen, G.L., Poli, A., Stichtenoth, H. (eds.) Proc. Fq7, Toulouse, France. Lecture Notes in Computer Science, vol. 2948, pp. 89–108. Springer, Berlin (2004) Google Scholar
  19. 19.
    Sedgewick, R., Flajolet, P.: An Introduction to the Analysis of Algorithms. Addison-Wesley, Reading (1996) zbMATHGoogle Scholar
  20. 20.
    Shoup, V.: A new polynomial factorization algorithm and its implementation. J. Symb. Comput. 20, 363–397 (1996) MathSciNetCrossRefGoogle Scholar
  21. 21.
    von zur Gathen, J., Gerhard, J.: Arithmetic and factorization of polynomials over \({\mathbb{F}}_{2}\). In: Proc. ISSAC’96, Zürich, Switzerland, pp. 1–9. ACM, New York (1996) Google Scholar
  22. 22.
    von zur Gathen, J., Gerhard, J.: Polynomial factorization over \({\mathbb{F}}_{2}\). Math. Comput. 71, 1677–1698 (2002) zbMATHCrossRefGoogle Scholar
  23. 23.
    von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge University Press, Cambridge (2003) zbMATHGoogle Scholar
  24. 24.
    von zur Gathen, J., Panario, D.: Factoring polynomials over finite fields: a survey. J. Symb. Comput. 31, 3–17 (2001) zbMATHCrossRefGoogle Scholar
  25. 25.
    von zur Gathen, J., Shoup, V.: Computing Frobenius maps and factoring polynomials. Comput. Complex. 2, 187–224 (1992) zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Joachim von zur Gathen
    • 1
  • Daniel Panario
    • 2
    Email author
  • Bruce Richmond
    • 3
  1. 1.B-IT Computer SecurityUniversität BonnBonnGermany
  2. 2.School of Mathematics and StatisticsCarleton UniversityOttawaCanada
  3. 3.Department of Combinatorics and OptimizationUniversity of WaterlooWaterlooCanada

Personalised recommendations