Algorithmica

, Volume 63, Issue 3, pp 672–691 | Cite as

Optimal Polygonal Representation of Planar Graphs

  • C. A. Duncan
  • E. R. Gansner
  • Y. F. Hu
  • M. Kaufmann
  • S. G. Kobourov
Article

Abstract

In this paper, we consider the problem of representing planar graphs by polygons whose sides touch. We show that at least six sides per polygon are necessary by constructing a class of planar graphs that cannot be represented by pentagons. We also show that the lower bound of six sides is matched by an upper bound of six sides with a linear-time algorithm for representing any planar graph by touching hexagons. Moreover, our algorithm produces convex polygons with edges having at most three slopes and with all vertices lying on an O(nO(n) grid.

Keywords

Planar graphs Contact graphs Graph drawing Polygonal drawings 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alam, M.J., Biedl, T., Felsner, S., Kaufmann, M., Kobourov, S.G.: Proportional contact representations of planar graphs. Tech. Rep. CS 2011-11, 2011, http://www.cs.uwaterloo.ca/research/tr/2011/CS-2011-11.pdf
  2. 2.
    Battista, G.D., Lenhart, W., Liotta, G.: Proximity drawability: a survey. In: Graph Drawing. Lecture Notes in Computer Science, vol. 894, pp. 328–39. Springer, Berlin (1994) Google Scholar
  3. 3.
    de Berg, M., Mumford, E., Speckmann, B.: On rectilinear duals for vertex-weighted plane graphs. Discrete Math. 309(7), 1794–1812 (2009) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Biedl, T., Bretscher, A., Meijer, H.: Rectangle of influence drawings of graphs without filled 3-cycles. In: Graph Drawing. Lecture Notes in Computer Science, vol. 1731, pp. 359–368. Springer, Berlin (1999) CrossRefGoogle Scholar
  5. 5.
    Bruls, M., Huizing, K., van Wijk, J.J.: Squarified treemaps. In: Proceedings of the Joint Eurographics/IEEE TVCG Symposium on Visualization, VisSym, pp. 33–42 (2000) Google Scholar
  6. 6.
    Buchsbaum, A.L., Gansner, E.R., Procopiuc, C.M., Venkatasubramanian, S.: Rectangular layouts and contact graphs. ACM Trans. Algorithms 4(1), 8:1–8:28 (2008) MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chrobak, M., Payne, T.: A linear-time algorithm for drawing planar graphs. Inf. Process. Lett. 54, 241–246 (1995) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Duncan, C.A., Gansner, E.R., Hu, Y.F., Kaufmann, M., Kobourov, S.G.: Optimal polygonal representation of planar graphs. ArXiv e-prints, Apr. 2011, arXiv:1104.1482
  9. 9.
    de Fraysseix, H., de Mendez, P.O., Rosenstiehl, P.: On triangle contact graphs. Comb. Probab. Comput. 3, 233–246 (1994) MATHCrossRefGoogle Scholar
  10. 10.
    de Fraysseix, H., Pach, J., Pollack, R.: Small sets supporting Fary embeddings of planar graphs. In: Proceedings of the 20th Symposium on the Theory of Computing (STOC), pp. 426–433 (1988) Google Scholar
  11. 11.
    de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographical analysis. Syst. Zool. 18, 54–64 (1969) CrossRefGoogle Scholar
  13. 13.
    Gansner, E.R., Hu, Y., Kobourov, S.: On touching triangle graphs. In: Graph Drawing. Lecture Notes in Computer Science, vol. 6502, pp. 250–261. Springer, Berlin (2011), http://dx.doi.org/10.1007/978-3-642-18469-7_23 CrossRefGoogle Scholar
  14. 14.
    Gonçalves, D., Lévêque, B., Pinlou, A.: Triangle contact representations and duality. In: Graph Drawing. Lecture Notes in Computer Science, vol. 6502, pp. 262–273. Springer, Berlin (2011). http://dx.doi.org/10.1007/978-3-642-18469-7_24 CrossRefGoogle Scholar
  15. 15.
    He, X.: On finding the rectangular duals of planar triangular graphs. SIAM J. Comput. 22(6), 1218–1226 (1993) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    He, X.: On floor-plan of plane graphs. SIAM J. Comput. 28(6), 2150–2167 (1999) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Hliněný, P.: Classes and recognition of curve contact graphs. J. Comb. Theory, Ser. B 74(1), 87–103 (1998) MATHCrossRefGoogle Scholar
  18. 18.
    Hliněný, P., Kratochvíl, J.: Representing graphs by disks and balls (a survey of recognition-complexity results). Discrete Math. 229(1–3), 101–124 (2001) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Hopcroft, J., Tarjan, R.E.: Efficient planarity testing. J. ACM 21(4), 549–568 (1974) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Jaromczyk, J.W., Toussaint, G.T.: Relative neighborhood graphs and their relatives. Proc. IEEE 80, 1502–1517 (1992) CrossRefGoogle Scholar
  21. 21.
    Kant, G.: Hexagonal grid drawings. In: 18th Workshop on Graph-Theoretic Concepts in Computer Science, pp. 263–276 (1992) Google Scholar
  22. 22.
    Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16, 4–32 (1996) (special issue on Graph Drawing, edited by G. Di Battista and R. Tamassia) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Kant, G., He, X.: Regular edge labeling of 4-connected plane graphs and its applications in graph drawing problems. Theor. Comput. Sci. 172, 175–193 (1997) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Koebe, P.: Kontaktprobleme der konformen Abbildung. Ber. Verh. K. Sächs. Ges. Wiss. Leipz., Math.-Phys. Kl. 88, 141–164 (1936) Google Scholar
  25. 25.
    Koźmiński, K., Kinnen, W.: Rectangular dualization and rectangular dissections. IEEE Trans. Circuits Syst. 35(11), 1401–1416 (1988) MATHCrossRefGoogle Scholar
  26. 26.
    Lai, Y.-T., Leinwand, S.M.: Algorithms for floorplan design via rectangular dualization. IEEE Trans. Comput.-Aided Des. 7, 1278–1289 (1988) CrossRefGoogle Scholar
  27. 27.
    Lai, Y.-T., Leinwand, S.M.: A theory of rectangular dual graphs. Algorithmica 5, 467–483 (1990) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Liao, C.-C., Lu, H.-I., Yen, H.-C.: Compact floor-planning via orderly spanning trees. J. Algorithms 48, 441–451 (2003) MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Liotta, G., Lubiw, A., Meijer, H., Whitesides, S.H.: The rectangle of influence drawability problem. Comput. Geom. Theory Appl. 10, 1–22 (1998) MathSciNetMATHGoogle Scholar
  30. 30.
    Rahman, M., Nishizeki, T., Ghosh, S.: Rectangular drawings of planar graphs. J. Algorithms 50(1), 62–78 (2004) MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Steadman, P.: Graph-theoretic representation of architectural arrangement. In: The Architecture of Form, pp. 94–115. Cambridge University Press, Cambridge (1976) Google Scholar
  32. 32.
    Thomassen, C.: Plane representations of graphs. In: Progress in Graph Theory, pp. 43–69 (1982) Google Scholar
  33. 33.
    Thomassen, C.: Interval representations of planar graphs. J. Comb. Theory, Ser. B 40, 9–20 (1988) MathSciNetCrossRefGoogle Scholar
  34. 34.
    Walker, J.Q., II: A node-positioning algorithm for general trees. Softw. Pract. Exp. 20(7), 685–705 (1990) CrossRefGoogle Scholar
  35. 35.
    Yeap, G.K., Sarrafzadeh, M.: Sliceable floorplanning by graph dualization. SIAM J. Discrete Math. 8(2), 258–280 (1995) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • C. A. Duncan
    • 1
  • E. R. Gansner
    • 2
  • Y. F. Hu
    • 2
  • M. Kaufmann
    • 3
  • S. G. Kobourov
    • 4
  1. 1.Dept. of Computer ScienceLouisiana Tech UniversityRustonUSA
  2. 2.AT&T Labs – ResearchFlorham ParkUSA
  3. 3.Wilhelm-Schickhard-Institut for Computer ScienceTübingen UniversityTübingenGermany
  4. 4.Dept. of Computer ScienceUniversity of ArizonaTucsonUSA

Personalised recommendations