Algorithmica

, Volume 62, Issue 1–2, pp 630–632 | Cite as

The Steiner Ratio Gilbert–Pollak Conjecture Is Still Open

Clarification Statement
Article

Abstract

The aim of this note is to clear some background information and references to readers interested in understanding the current status of the Gilbert–Pollak Conjecture, in particular, to show that A.O. Ivanov and A.A. Tuzhilin were the first who understood the nature of the real gaps in Du–Hwang proof, what has reflected in their publications starting from 2002.

Keywords

Steiner minimal tree Minimal spanning tree Steiner ratio Gilbert–Pollak conjecture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Innami, N., Kim, B.H., Mashiko, Y., Shiohama, K.: The Steiner ratio conjecture of Gilbert–Pollak may still be open. Algorithmica (2010). doi:10.1007/s00453-008-9254-3 MATHMathSciNetGoogle Scholar
  2. 2.
    Du, D.Z., Hwang, F.K.: The Steiner ratio conjecture of Gilbert–Pollak is true. Proc. Natl. Acad. Sci. USA 87, 9464–9466 (1990) CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Du, D.Z., Hwang, F.K.: A proof of Gilbert–Pollak Conjecture on the Steiner ratio. Algorithmica 7, 121–135 (1992) CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Yue, M.: A report on the Steiner ratio conjecture. OR Trans. 4(1), 1–21 (2000) Google Scholar
  5. 5.
    Chung, F., Graham, R.: A new bound for Euclidean Steiner minimal trees. Ann. N.Y. Acad. Sci. 440, 328–346 (1985) CrossRefMathSciNetGoogle Scholar
  6. 6.
    Ivanov, A.O., Tuzhilin, A.A., Cieslik, D.: Steiner ratio for manifolds. Math. Notes - Ross. Akad. 74(3–4), 367–374 (2003) MATHMathSciNetGoogle Scholar
  7. 7.
    Ivanov, A.O., Tuzhilin, A.A.: Extreme Networks Theory. Institute of Computer Investigations, Moscow–Izhevsk (2003) (in Russian) Google Scholar
  8. 8.
    Ivanov, A.O., Tuzhilin, A.A.: Immersed polygons and their diagonal triangulations. Izv. Math. 72(1), 63–90 (2008) CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    De Wet, P.O.: Geometric Steiner minimal trees, Thesis, UNISA, Pretoria, 2008 Google Scholar
  10. 10.
    Ivanov, A.O., Tuzhilin, A.A.: The Steiner ratio: the current state. Mat. Vopr. Kibern. 11, 27–48 (2002) (in Russian). www.zentralblatt-math.org/zmath/en/search/?q=an:pre05531161 MATHMathSciNetGoogle Scholar
  11. 11.
    Yue, M.: Steiner Trees. Shanghai Keji Publisher, Shanghai (2006) (in Chinese) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Faculty of Mechanics and MathematicsMoscow State UniversityMoscowRussia

Personalised recommendations