, Volume 62, Issue 3–4, pp 930–950 | Cite as

Approximation and Tidying—A Problem Kernel for s-Plex Cluster Vertex Deletion

  • René van BevernEmail author
  • Hannes Moser
  • Rolf Niedermeier


We introduce the NP-hard graph-based data clustering problem s-Plex Cluster Vertex Deletion, where the task is to delete at most k vertices from a graph so that the connected components of the resulting graph are s-plexes. In an s-plex, every vertex has an edge to all but at most s−1 other vertices; cliques are 1-plexes. We propose a new method based on “approximation and tidying” for kernelizing vertex deletion problems whose goal graphs can be characterized by forbidden induced subgraphs. The method exploits polynomial-time approximation results and thus provides a useful link between approximation and kernelization. Employing “approximation and tidying”, we develop data reduction rules that, in O(ksn 2) time, transform an s-Plex Cluster Vertex Deletion instance with n vertices into an equivalent instance with O(k 2 s 3) vertices, yielding a problem kernel. To this end, we also show how to exploit structural properties of the specific problem in order to significantly improve the running time of the proposed kernelization method.


Computational intractability NP-hard graph problem Polynomial-time data reduction Fixed-parameter tractability Graph-based data clustering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abu-Khzam, F.N.: A kernelization algorithm for d-hitting set. J. Comput. Syst. Sci. 76(7), 524–531 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Alba, R.D.: A graph-theoretic definition of a sociometric clique. J. Math. Sociol. 3, 3–113 (1973) CrossRefMathSciNetGoogle Scholar
  3. 3.
    Balasundaram, B., Butenko, S., Hicks, I.V.: Clique relaxations in social network analysis: The maximum k-plex problem. Operations Research (2011, to appear) Google Scholar
  4. 4.
    Bodlaender, H.L.: Kernelization: New upper and lower bound techniques. In: Proceedings of the 4th International Workshop on Parameterized and Exact Computation (IWPEC ’09). Lecture Notes in Computer Science, vol. 5917, pp. 17–37. Springer, Berlin (2009) CrossRefGoogle Scholar
  5. 5.
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Chesler, E.J., Lu, L., Shou, S., Qu, Y., Gu, J., Wang, J., Hsu, H.C., Mountz, J.D., Baldwin, N.E., Langston, M.A., Threadgill, D.W., Manly, K.F., Williams, R.W.: Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat. Genet. 37(3), 233–242 (2005) CrossRefGoogle Scholar
  7. 7.
    Cook, V.J., Sun, S.J., Tapia, J., Muth, S.Q., Argüello, D.F., Lewis, B.L., Rothenberg, R.B., McElroy, P.D., The Network Analysis Project Team: Transmission network analysis in tuberculosis contact investigations. J. Infect. Dis. 196, 1517–1527 (2007) CrossRefGoogle Scholar
  8. 8.
    Díaz, J., Thilikos, D.M.: Fast FPT-algorithms for cleaning grids. In: Proceedings of the 23rd International Symposium on Theoretical Aspects of Computer Science (STACS ’06). Lecture Notes in Computer Science, vol. 3884, pp. 361–371. Springer, Berlin (2006) Google Scholar
  9. 9.
    Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through colors and IDs. In: Proceedings of the 36th International Colloquium on Automata, Languages, and Programming (ICALP ’09). Lecture Notes in Computer Science, vol. 5555, pp. 378–389. Springer, Berlin (2009) CrossRefGoogle Scholar
  10. 10.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1999) CrossRefGoogle Scholar
  11. 11.
    Fellows, M.R., Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Graph-based data clustering with overlaps. Discrete Optim. (2010). doi: 10.1016/j.disopt.2010.09.006 Google Scholar
  12. 12.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006) Google Scholar
  13. 13.
    Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. SIGACT News 38(1), 31–45 (2007) CrossRefGoogle Scholar
  14. 14.
    Guo, J., Moser, H., Niedermeier, R.: Iterative compression for exactly solving NP-hard minimization problems. In: Algorithmics of Large and Complex Networks. Lecture Notes in Computer Science, vol. 5515, pp. 65–80. Springer, Berlin (2009) CrossRefGoogle Scholar
  15. 15.
    Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: A more relaxed model for graph-based data clustering: s-plex cluster editing. SIAM J. Discrete Math. 24(4), 1662–1683 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Hüffner, F., Niedermeier, R., Wernicke, S.: Techniques for practical fixed-parameter algorithms. Comput. J. 51(1), 7–25 (2008) CrossRefGoogle Scholar
  17. 17.
    Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algorithms for cluster vertex deletion. Theory Comput. Syst. 47(1), 196–217 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Kolaitis, P.G., Thakur, M.N.: Logical definability of NP optimization problems. Inf. Comput. 115(2), 321–353 (1994) CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Kratsch, S.: Polynomial kernelizations for MIN F+Π1 and MAX NP. In: Proceedings of the 26th International Symposium on Theoretical Aspects of Computer Science (STACS ’09), IBFI Dagstuhl, Germany, pp. 601–612 (2009) Google Scholar
  20. 20.
    Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980) CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Marx, D., Schlotter, I.: Parameterized graph cleaning problems. Discrete Appl. Math. 157(15), 3258–3267 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    McClosky, B., Hicks, I.: Combinatorial algorithms for the maximum k-plex problem. J. Comb. Optim. (2011). doi: 10.1007/s10878-010-9338-2 Google Scholar
  23. 23.
    Memon, N., Kristoffersen, K.C., Hicks, D.L., Larsen, H.L.: Detecting critical regions in covert networks: A case study of 9/11 terrorists network. In: Proceedings of the 2nd International Conference on Availability, Reliability and Security (ARES ’07), pp. 861–870. IEEE Comput. Soc., Los Alamitos (2007) CrossRefGoogle Scholar
  24. 24.
    Mokken, R.J.: Cliques, clubs and clans. Qual. Quant. 13, 161–173 (1979) CrossRefGoogle Scholar
  25. 25.
    Moser, H., Niedermeier, R., Sorge, M.: Algorithms and experiments for clique relaxations—finding maximum s-plexes. In: Proceedings of the 8th International Symposium on Experimental Algorithms (SEA ’09). Lecture Notes in Computer Science, vol. 5526, pp. 233–244. Springer, Berlin (2009) Google Scholar
  26. 26.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006) CrossRefzbMATHGoogle Scholar
  27. 27.
    Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32(4), 299–301 (2004) CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Schaeffer, S.E.: Graph clustering. Comput. Sci. Rev. 1(1), 27–64 (2007) CrossRefMathSciNetGoogle Scholar
  29. 29.
    Seidman, S.B., Foster, B.L.: A graph-theoretic generalization of the clique concept. J. Math. Sociol. 6, 139–154 (1978) CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Appl. Math. 144(1–2), 173–182 (2004) CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Wu, B., Pei, X.: A parallel algorithm for enumerating all the maximal k-plexes. In: Emerging Technologies in Knowledge Discovery and Data Mining. Lecture Notes in Artificial Intelligence, vol. 4819, pp. 476–483. Springer, Berlin (2007) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • René van Bevern
    • 1
    Email author
  • Hannes Moser
    • 2
  • Rolf Niedermeier
    • 1
  1. 1.Institut für Softwaretechnik und Theoretische InformatikTU BerlinBerlinGermany
  2. 2.Institut für InformatikFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations