Algorithmica

, Volume 62, Issue 3–4, pp 879–905 | Cite as

On Smoothed Analysis of Quicksort and Hoare’s Find

  • Mahmoud Fouz
  • Manfred Kufleitner
  • Bodo Manthey
  • Nima Zeini Jahromi
Open Access
Article

Abstract

We provide a smoothed analysis of Hoare’s find algorithm, and we revisit the smoothed analysis of quicksort. Hoare’s find algorithm—often called quickselect or one-sided quicksort—is an easy-to-implement algorithm for finding the k-th smallest element of a sequence. While the worst-case number of comparisons that Hoare’s find needs is Θ(n2), the average-case number is Θ(n). We analyze what happens between these two extremes by providing a smoothed analysis.

In the first perturbation model, an adversary specifies a sequence of n numbers of [0,1], and then, to each number of the sequence, we add a random number drawn independently from the interval [0,d]. We prove that Hoare’s find needs \(\Theta(\frac{n}{d+1} \sqrt{n/d} + n)\) comparisons in expectation if the adversary may also specify the target element (even after seeing the perturbed sequence) and slightly fewer comparisons for finding the median.

In the second perturbation model, each element is marked with a probability of p, and then a random permutation is applied to the marked elements. We prove that the expected number of comparisons to find the median is \(\Omega((1-p) \frac{n}{p} \log n)\).

Finally, we provide lower bounds for the smoothed number of comparisons of quicksort and Hoare’s find for the median-of-three pivot rule, which usually yields faster algorithms than always selecting the first element: The pivot is the median of the first, middle, and last element of the sequence. We show that median-of-three does not yield a significant improvement over the classic rule.

Keywords

Smoothed analysis Hoare’s find Quickselect Quicksort Median-of-three 

References

  1. 1.
    Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading (1974) MATHGoogle Scholar
  2. 2.
    Arthur, D., Vassilvitskii, S.: Worst-case and smoothed analysis of the ICP algorithm, with an application to the k-means method. SIAM Journal on Computing 39(2), 766–782 (2009) CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Arthur, D., Manthey, B., Röglin, H.: k-means has polynomial smoothed complexity. In: Proceedings of the 50th Annual IEEE Symp. on Foundations of Computer Science (FOCS), pp. 405–414. IEEE Computer Society, New York (2009) CrossRefGoogle Scholar
  4. 4.
    Banderier, C., Beier, R., Mehlhorn, K.: Smoothed analysis of three combinatorial problems. In: Rovan, B., Vojtás, P. (eds.) Proceedings of the 28th International Symposium on Mathematical Foundations of Computer Science (MFCS). Lecture Notes in Computer Science, vol. 2747, pp. 198–207. Springer, Berlin (2003) Google Scholar
  5. 5.
    Becchetti, L., Leonardi, S., Marchetti-Spaccamela, A., Schäfer, G., Vredeveld, T.: Average case and smoothed competitive analysis of the multilevel feedback algorithm. Mathematics of Operations Research 31(1), 85–108 (2006) CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Beier, R., Vöcking, B.: Random knapsack in expected polynomial time. Journal of Computer and System Sciences 69(3), 306–329 (2004) CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Beier, R., Vöcking, B.: Typical properties of winners and losers in discrete optimization. SIAM Journal on Computing 35(4), 855–881 (2006) CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Beier, R., Röglin, H., Vöcking, B.: The smoothed number of Pareto optimal solutions in bicriteria integer optimization. In: Fischetti, M., Williamson, D.P. (eds.) Proceedings of the 12th International Conference on Integer Programming and Combinatorial Optimization (IPCO). Lecture Notes in Computer Science, vol. 4513, pp. 53–67. Springer, Berlin (2007) Google Scholar
  9. 9.
    Cederman, D., Tsigas, P.: GPU-quicksort: a practical quicksort algorithm for graphics processors. ACM J. Exp. Algorithms 14 (2009) Google Scholar
  10. 10.
    Damerow, V., Manthey, B., auf der Heide, F.M., Räcke, H., Scheideler, C., Sohler, C., Tantau, T.: Smoothed analysis of left-to-right maxima with applications. ACM Trans. Algorithms (to appear) Google Scholar
  11. 11.
    Dubhashi, D., Panconesi, A.: Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press, Cambridge (2009) CrossRefMATHGoogle Scholar
  12. 12.
    Englert, M., Röglin, H., Vöcking, B.: Worst case and probabilistic analysis of the 2-Opt algorithm for the TSP. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1295–1304. SIAM, Philadelphia (2007) Google Scholar
  13. 13.
    Erkiö, H.: The worst case permutation for median-of-three quicksort. The Computer Journal 27(3), 276–277 (1984) CrossRefMATHGoogle Scholar
  14. 14.
    Fouz, M., Kufleitner, M., Manthey, B., Zeini Jahromi, N.: Smoothed analysis of quicksort and Hoare’s find. In: Ngo, H.Q. (ed.) Proceedings of the 15th Annual International Computing and Combinatorics Conference (COCOON). Lecture Notes in Computer Science, vol. 5609, pp. 158–167. Springer, Berlin (2009) Google Scholar
  15. 15.
    Hoare, C.A.R.: Algorithm 64: Quicksort. Communications of the ACM 4(7), 322 (1961) CrossRefGoogle Scholar
  16. 16.
    Hoare, C.A.R.: Algorithm 65: Find. Communications of the ACM 4(7), 321–322 (1961) CrossRefGoogle Scholar
  17. 17.
    Kirschenhofer, P., Prodinger, H.: Comparisons in Hoare’s find algorithm. Combinatorics, Probability and Computing 7(1), 111–120 (1998) CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Kirschenhofer, P., Prodinger, H., Martinez, C.: Analysis of Hoare’s find algorithm with median-of-three partition. Random Structures and Algorithms 10(1–2), 143–156 (1997) CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Knuth, D.E.: Sorting and Searching, 2nd edn. The Art of Computer Programming, vol. 3. Addison-Wesley, Reading (1998) Google Scholar
  20. 20.
    Manthey, B., Reischuk, R.: Smoothed analysis of binary search trees. Theoretical Computer Science 378(3), 292–315 (2007) CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Manthey, B., Röglin, H.: Improved smoothed analysis of k-means clustering. In: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 461–470. SIAM, Philadelphia (2009) Google Scholar
  22. 22.
    Manthey, B., Röglin, H.: Worst-case and smoothed analysis of k-means clustering with Bregman divergences. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) Proceedings of the 20th Annual International Symposium on Algorithms and Computation (ISAAC). Lecture Notes in Computer Science, vol. 5878, pp. 1024–1033. Springer, Berlin (2009) Google Scholar
  23. 23.
    Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, Cambridge (2005) MATHGoogle Scholar
  24. 24.
    Neininger, R.: Limit laws for random recursive structures and algorithms. Ph.D. thesis, Universität Freiburg (1999) Google Scholar
  25. 25.
    Röglin, H., Vöcking, B.: Smoothed analysis of integer programming. Mathematical Programming 110(1), 21–56 (2007) CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Schmidt, D.C.: qsort.c. C standard library stdlib within glibc 2.7, available at http://ftp.gnu.org/gnu/glibc/ (2007)
  27. 27.
    Sedgewick, R.: The analysis of quicksort programs. Acta Informatica 7(4), 327–355 (1977) CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Sedgewick, R.: Implementing quicksort programs. Communications of the ACM 21(10), 847–857 (1978) CrossRefMATHGoogle Scholar
  29. 29.
    Singleton, R.C.: Algorithm 347: an efficient algorithm for sorting with minimal storage. Communications of the ACM 12(3), 185–186 (1969) CrossRefGoogle Scholar
  30. 30.
    Spielman, D.A., Teng, S.-H.: Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time. Journal of the ACM 51(3), 385–463 (2004) CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Spielman, D.A., Teng, S.-H.: Smoothed analysis: an attempt to explain the behavior of algorithms in practice. Communications of the ACM 52(10), 76–84 (2009) CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  • Mahmoud Fouz
    • 1
  • Manfred Kufleitner
    • 2
  • Bodo Manthey
    • 3
  • Nima Zeini Jahromi
    • 1
  1. 1.Department of Computer ScienceSaarland UniversitySaarbrückenGermany
  2. 2.FMIUniversität StuttgartStuttgartGermany
  3. 3.Department of Applied MathematicsUniversity of TwenteAE EnschedeThe Netherlands

Personalised recommendations