, Volume 62, Issue 1–2, pp 382–415 | Cite as

Fast Algorithms for max independent set

  • Nicolas Bourgeois
  • Bruno EscoffierEmail author
  • Vangelis T. Paschos
  • Johan M. M. van Rooij


We first propose a method, called “bottom-up method” that, informally, “propagates” improvement of the worst-case complexity for “sparse” instances to “denser” ones and we show an easy though non-trivial application of it to the min set cover problem. We then tackle max independent set. Here, we propagate improvements of worst-case complexity from graphs of average degree d to graphs of average degree greater than d. Indeed, using algorithms for max independent set in graphs of average degree 3, we successively solve max independent set in graphs of average degree 4, 5 and 6. Then, we combine the bottom-up technique with measure and conquer techniques to get improved running times for graphs of maximum degree 5 and 6 but also for general graphs. The computation bounds obtained for max independent set are O (1.1571 n ), O (1.1895 n ) and O (1.2050 n ), for graphs of maximum (or more generally average) degree 4, 5 and 6 respectively, and O (1.2114 n ) for general graphs. These results improve upon the best known results for these cases for polynomial space algorithms.


Bottom-up method Max independent set Exact algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beigel, R.: Finding maximum independent sets in sparse and general graphs. In: Proc. Symposium on Discrete Algorithms, SODA’99, pp. 856–857 (1999) Google Scholar
  2. 2.
    Bourgeois, N., Escoffier, B., Paschos, V.Th.: An O (1.0977n) exact algorithm for max independent set in sparse graphs. In: Grohe, M., Niedermeier, R. (eds.) Proc. International Workshop on Exact and Parameterized Computation, IWPEC’08. Lecture Notes in Computer Science, vol. 5018, pp. 55–65. Springer, Berlin (2008) CrossRefGoogle Scholar
  3. 3.
    Bourgeois, N., Escoffier, B., Paschos, V.Th., Van Rooij, J.M.M: Maximum independent set in graphs of average degree at most three in O(1.08537n). In: Kratochvíl, J., Li, A., Fiala, J., Kolman, P. (eds.) Proc. Conference on Theory and Applications of Models of Computation, TAMC’10. Lecture Notes in Computer Science, vol. 6108, pp. 373–384. Springer, Berlin (2010) CrossRefGoogle Scholar
  4. 4.
    Chen, J., Liu, L., Jia, W.: Improvement on vertex cover for low-degree graphs. Networks 35(4), 253–259 (2000) CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Chen, J., Kanj, I.A., Xia, G.: Labeled search trees and amortized analysis: improved upper bounds for NP-hard problems. Algorithmica 43(4), 245–273 (2005) CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Dahllöf, V., Jonsson, P., Wahlström, M.: Counting models for 2SAT and 3SAT formulæ. Theor. Comput. Sci. 332(1–3), 265–291 (2005) CrossRefzbMATHGoogle Scholar
  7. 7.
    Fomin, F.V., Høie, K.: Pathwidth of cubic graphs and exact algorithms. Inf. Process. Lett. 97(5), 191–196 (2006) CrossRefzbMATHGoogle Scholar
  8. 8.
    Fomin, F.V., Gaspers, S., Saurabh, S., Stepanov, A.A.: On two techniques of combining branching and treewidth. Algorithmica 54(2), 181–207 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the analysis of exact algorithms. J. Assoc. Comput. Mach. 56(5), 1–32 (2009) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Fürer, M.: A faster algorithm for finding maximum independent sets in sparse graphs. In: Corea, J.R., Hevia, A., Kiwi, M. (eds.) Proc. Latin American Symposium on Theoretical Informatics, LATIN’06. Lecture Notes in Computer Science, vol. 3887, pp. 491–501. Springer, Berlin (2006) CrossRefGoogle Scholar
  11. 11.
    Fürer, M., Kasiviswanathan, S.P.: Algorithms for counting 2-SAT solutions and colorings with applications. In: Kao, M.-Y., Li, X.-Y. (eds.) Proc. Algorithmic Aspects in Information and Management, AAIM’07. Lecture Notes in Computer Science, vol. 4508, pp. 47–57. Springer, Berlin (2007) CrossRefGoogle Scholar
  12. 12.
    Goldberg, M.K., Spencer, T.H., Berque, D.A.: A low-exponential algorithm for counting vertex covers. In: Graph Theory, Combinatorics and Algorithms. Proc. 7th Quadrennial International Conference on the Theory and Application of Graphs, vol. 1, pp. 431–444. Wiley, New York (1992) Google Scholar
  13. 13.
    Kneis, J., Langer, A., Rossmanith, P.: A fine-grained analysis of a simple independent set algorithm. In: Kannan, R., Narayan Kumar, K. (eds.) Proc. Foundations of Software Technology and Theoretical Computer Science, FSTTCS’09. LIPIcs, vol. 4, pp. 287–298. Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik (2009) Google Scholar
  14. 14.
    Kojevnikov, A., Kulikov, A.S.: A new approach to proving upper bounds for max-2-sat. In: Proc. Symposium on Discrete Algorithms, SODA’06, pp. 11–17 (2006) CrossRefGoogle Scholar
  15. 15.
    Razgon, I.: Faster computation of maximum independent set and parameterized vertex cover for graphs with maximum degree 3. J. Discrete Algorithms 7, 191–212 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Robson, J.M.: Algorithms for maximum independent sets. J. Algorithms 7(3), 425–440 (1986) CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Robson, J.M.: Finding a maximum independent set in time O(2n/4). Technical Report 1251-01, LaBRI, Université de Bordeaux I (2001) Google Scholar
  18. 18.
    van Rooij, J.M.M., Bodlaender, H.L.: Design by measure and conquer, a faster exact algorithm for dominating set. In: Albers, S., Weil, P. (eds.) Proc. International Symposium on Theoretical Aspects of Computer Science, STACS’08, pp. 657–668. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (2008) Google Scholar
  19. 19.
    Wahlström, M.: A tighter bound for counting max-weight solutions to 2sat instances. In: Grohe, M., Niedermeier, R. (eds.) Proc. Parameterized and Exact Computation, Third International Workshop, IWPEC’08. Lecture Notes in Computer Science, vol. 5018, pp. 202–213. Springer, Berlin (2008) CrossRefGoogle Scholar
  20. 20.
    Woeginger, G.J.: Exact algorithms for NP-hard problems: a survey. In: Juenger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization—Eureka! You shrink! Lecture Notes in Computer Science, vol. 2570, pp. 185–207. Springer, Berlin (2003) CrossRefGoogle Scholar
  21. 21.
    Xiao, M.: New branching rules: improvements on independent set and vertex cover in sparse graphs. CoRR (2009). arXiv:0904.2712

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Nicolas Bourgeois
    • 1
  • Bruno Escoffier
    • 1
    Email author
  • Vangelis T. Paschos
    • 1
  • Johan M. M. van Rooij
    • 2
  1. 1.LAMSADEUniversité Paris-DauphineParis Cédex 16France
  2. 2.Department of Information and Computing SciencesUniversiteit UtrechtUtrechtThe Netherlands

Personalised recommendations