, Volume 62, Issue 1–2, pp 309–332 | Cite as

Drawing (Complete) Binary Tanglegrams

Hardness, Approximation, Fixed-Parameter Tractability
  • Kevin Buchin
  • Maike Buchin
  • Jaroslaw Byrka
  • Martin Nöllenburg
  • Yoshio Okamoto
  • Rodrigo I. Silveira
  • Alexander Wolff
Open Access


A binary tanglegram is a drawing of a pair of rooted binary trees whose leaf sets are in one-to-one correspondence; matching leaves are connected by inter-tree edges. For applications, for example, in phylogenetics, it is essential that both trees are drawn without edge crossings and that the inter-tree edges have as few crossings as possible. It is known that finding a tanglegram with the minimum number of crossings is NP-hard and that the problem is fixed-parameter tractable with respect to that number.

We prove that under the Unique Games Conjecture there is no constant-factor approximation for binary trees. We show that the problem is NP-hard even if both trees are complete binary trees. For this case we give an O(n 3)-time 2-approximation and a new, simple fixed-parameter algorithm. We show that the maximization version of the dual problem for binary trees can be reduced to a version of MaxCut for which the algorithm of Goemans and Williamson yields a 0.878-approximation.


Binary tanglegram Crossing minimization NP-hardness Approximation algorithm Fixed-parameter tractability 


  1. 1.
    Bansal, M.S., Chang, W.-C., Eulenstein, O., Fernández-Baca, D.: Generalized binary tanglegrams: algorithms and applications. In: Rajasekaran, S. (ed.) Proc. 1st Internat. Conf. Bioinformatics Comput. Biol. (BICoB’09). Lecture Notes Comput. Sci., vol. 5462, pp. 114–125. Springer, Berlin (2009) Google Scholar
  2. 2.
    Baumann, F., Buchheim, C., Liers, F.: Exact bipartite crossing minimization under tree constraints. In: Festa, P. (ed.) Proc. 9th Internat. Sympos. Experimental Algorithms (SEA’10), vol. 6049, pp. 118–128. Springer, Berlin (2010) Google Scholar
  3. 3.
    Bertolazzi, P., Di Battista, G., Mannino, C., Tamassia, R.: Optimal upward planarity testing of single-source digraphs. SIAM J. Comput. 27(1), 132–169 (1998) CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Böcker, S., Hüffner, F., Truss, A., Wahlström, M.: A faster fixed-parameter approach to drawing binary tanglegrams. In: Chen, J., Fomin, F. (eds.) Proc. 4th Internat. Workshop Parameterized and Exact Comput. (IWPEC’09). Lecture Notes Comput. Sci., vol. 5917, pp. 38–49. Springer, Berlin (2009) CrossRefGoogle Scholar
  5. 5.
    Buchin, K., Buchin, M., Byrka, J., Nöllenburg, M., Okamoto, Y., Silveira, R.I., Wolff, A.: Drawing (complete) binary tanglegrams: hardness, approximation, fixed-parameter tractability. In: Tollis, I.G., Patrignani, M. (eds.) Proc. 16th Internat. Symp. Graph Drawing (GD’08). Lecture Notes Comput. Sci., vol. 5417, pp. 324–335. Springer, Berlin (2009) Google Scholar
  6. 6.
    Burer, S., Monteiro, R.D.: A projected gradient algorithm for solving the Maxcut SDP relaxation. Optim. Methods Softw. 15, 175–200 (2001) CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001) zbMATHGoogle Scholar
  8. 8.
    DasGupta, B., He, X., Jiang, T., Li, M., Tromp, J., Zhang, L.: On distances between phylogenetic trees. In: Proc. 18th Annu. ACM-SIAM Sympos. Discrete Algorithms (SODA’97), pp. 427–436 (1997) Google Scholar
  9. 9.
    Dujmović, V., Fernau, H., Kaufmann, M.: Fixed parameter algorithms for one-sided crossing minimization revisited. J. Discrete Algorithms 6(2), 313–323 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Dwyer, T., Schreiber, F.: Optimal leaf ordering for two and a half dimensional phylogenetic tree visualization. In: Churcher, N., Churcher, C. (eds.) Proc. Australasian Sympos. Inform. Visual. (’04). CRPIT, vol. 35, pp. 109–115. Australian Comput. Soc., Canberra (2004) Google Scholar
  11. 11.
    Eades, P., Wormald, N.: Edge crossings in drawings of bipartite graphs. Algorithmica 10, 379–403 (1994) CrossRefMathSciNetGoogle Scholar
  12. 12.
    Fernau, H., Kaufmann, M., Poths, M.: Comparing trees via crossing minimization. In: Ramanujam, R., Sen, S. (eds.) Proc. 25th Intern. Conf. Found. Softw. Techn. Theoret. Comput. Sci. (FSTTCS’05). Lecture Notes Comput. Sci., vol. 3821, pp. 457–469. Springer, Berlin (2005) CrossRefGoogle Scholar
  13. 13.
    Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint set union. In: Proc. 15th Annu. ACM Symp. Theory Comput. (STOC’83), pp. 246–251 (1983) Google Scholar
  14. 14.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, New York (1979) zbMATHGoogle Scholar
  15. 15.
    Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42(6), 1115–1145 (1995) CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Hafner, M.S., Sudman, P.D., Villablanca, F.X., Spradling, T.A., Demastes, J.W., Nadler, S.A.: Disparate rates of molecular evolution in cospeciating hosts and parasites. Science 265, 1087–1090 (1994) CrossRefGoogle Scholar
  17. 17.
    Holten, D., van Wijk, J.J.: Visual comparison of hierarchically organized data. In: Proc. 10th Eurographics/IE EE-VGTC Sympos. Visualization (EuroVis’08), pp. 759–766 (2008) Google Scholar
  18. 18.
    Khot, S.: On the power of unique 2-prover 1-round games. In Proc. 34th Annu. ACM Sympos. Theory Comput. (STOC’02), pp. 767–775 (2002) Google Scholar
  19. 19.
    Khot, S., Vishnoi, N.K.: The unique games conjecture, integrality gap for cut problems and embeddability of negative type metrics into l 1. In: Proc. 46th Annu. IEEE Sympos. Foundat. Comput. Sci. (FOCS’05), pp. 53–62 (2005) CrossRefGoogle Scholar
  20. 20.
    Lozano, A., Pinter, R.Y., Rokhlenko, O., Valiente, G., Ziv-Ukelson, M.: Seeded tree alignment and planar tanglegram layout. In: Giancarlo, R., Hannenhalli, S. (eds.) Proc. 7th Internat. Workshop Algorithms Bioinformatics (WABI’07). Lecture Notes Comput. Sci., vol. 4645, pp. 98–110. Springer, Berlin (2007) Google Scholar
  21. 21.
    Nagamochi, H.: An improved bound on the one-sided minimum crossing number in two-layered drawings. Discrete Comput. Geom. 33(4), 565–591 (2005) CrossRefMathSciNetGoogle Scholar
  22. 22.
    Nöllenburg, M., Völker, M., Wolff, A., Holten, D.: Drawing binary tanglegrams: an experimental evaluation. In: Proc. 11th Workshop Algorithm Engineering and Experiments (ALENEX’09), pp. 106–119. SIAM, Philadelphia (2009) Google Scholar
  23. 23.
    Page, R.D.M. (ed.): Tangled Trees: Phylogeny, Cospeciation, and Coevolution. University of Chicago Press, Chicago (2002) Google Scholar
  24. 24.
    Raman, V., Ravikumar, B., Rao, S.S.: A simplified NP-complete MAXSAT problem. Inf. Process. Lett. 65, 1–6 (1998) CrossRefMathSciNetGoogle Scholar
  25. 25.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Trans. Syst. Man Cybern. 11(2), 109–125 (1981) CrossRefMathSciNetGoogle Scholar
  26. 26.
    Venkatachalam, B., Apple, J., John, K.St., Gusfield, D.: Untangling tanglegrams: Comparing trees by their drawings. IEEE/ACM Trans. Comput. Biol. Bioinf., PrePrints (2010). doi:  10.1109/TCBB.2010.57

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • Kevin Buchin
    • 1
  • Maike Buchin
    • 1
  • Jaroslaw Byrka
    • 2
  • Martin Nöllenburg
    • 3
  • Yoshio Okamoto
    • 4
  • Rodrigo I. Silveira
    • 5
  • Alexander Wolff
    • 6
  1. 1.Faculteit Wiskunde en InformaticaTU EindhovenEindhovenThe Netherlands
  2. 2.Institute of Computer ScienceUniversity of WroclawWroclawPoland
  3. 3.Institute of Theoretical InformaticsKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  4. 4.Graduate School of Information Science and EngineeringTokyo Institute of TechnologyTokyoJapan
  5. 5.Departament de Matemàtica Aplicada IIUniversitat Politècnica de CatalunyaBarcelonaSpain
  6. 6.Lehrstuhl I, Institut für InformatikUniversität WürzburgWürzburgGermany

Personalised recommendations