Advertisement

Algorithmica

, Volume 61, Issue 1, pp 116–140 | Cite as

On the Performance of Approximate Equilibria in Congestion Games

  • George Christodoulou
  • Elias Koutsoupias
  • Paul G. Spirakis
Article

Abstract

We study the performance of approximate Nash equilibria for congestion games with polynomial latency functions. We consider how much the price of anarchy worsens and how much the price of stability improves as a function of the approximation factor ε. We give tight bounds for the price of anarchy of atomic and non-atomic congestion games and for the price of stability of non-atomic congestion games. For the price of stability of atomic congestion games we give non-tight bounds for linear latencies. Our results not only encompass and generalize the existing results of exact equilibria to ε-Nash equilibria, but they also provide a unified approach which reveals the common threads of the atomic and non-atomic price of anarchy results. By expanding the spectrum, we also cast the existing results in a new light.

Keywords

Price of anarchy Price of stability Congestion games Algorithmic Game Theory Approximate equilibria Selfish routing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aland, S., Dumrauf, D., Gairing, M., Monien, B., Schoppmann, F.: Exact price of anarchy for polynomial congestion games. In: STACS, pp. 218–229 (2006) Google Scholar
  2. 2.
    Albers, S.: On the value of coordination in network design. In: SODA, pp. 294–303 (2008) Google Scholar
  3. 3.
    Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, É., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. In: FOCS, pp. 295–304 (2004) Google Scholar
  4. 4.
    Awerbuch, B., Azar, Y., Epstein, A.: The price of routing unsplittable flow. In: STOC, pp. 57–66 (2005) Google Scholar
  5. 5.
    Beckmann, M., McGuire, C.B., Winston, C.B.: Studies in the Economics of Transportation. Yale University Press, New Haven (1956) Google Scholar
  6. 6.
    Caragiannis, I., Flammini, M., Kaklamanis, C., Kanellopoulos, P., Moscardelli, L.: Tight bounds for selfish and greedy load balancing. In: ICALP, pp. 311–322 (2006) Google Scholar
  7. 7.
    Chen, X., Deng, X.: Settling the complexity of two-player Nash equilibrium. In: FOCS, pp. 261–272 (2006) Google Scholar
  8. 8.
    Chen, H.-L., Roughgarden, T.: Network design with weighted players. In: SPAA, pp. 29–38 (2006) Google Scholar
  9. 9.
    Chien, S., Sinclair, A.: Convergence to approximate Nash equilibria in congestion games. In: SODA, pp. 169–178 (2007) Google Scholar
  10. 10.
    Christodoulou, G., Koutsoupias, E.: On the price of anarchy and stability of correlated equilibria of linear congestion games. In: ESA, pp. 59–70 (2005) Google Scholar
  11. 11.
    Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion games. In: STOC, pp. 67–73 (2005) Google Scholar
  12. 12.
    Christodoulou, G., Koutsoupias, E., Spirakis, P.G.: On the performance of approximate equilibria in congestion games. In: CoRR (2008). 0804.3160
  13. 13.
    Correa, J.R., Schulz, A.S., Stier Moses, N.E.: Selfish routing in capacitated networks. Math. Oper. Res. 29(4), 961–976 (2004) MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Correa, J.R., Schulz, A.S., Stier Moses, N.E.: Fast, fair, and efficient flows in networks. Oper. Res. 55, 215–225 (2007) MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Dafermos, S.C., Sparrow, F.T.: The traffic assignment problem for a general network. J. Res. Natl. Bur. Stand. Ser. B 73B(2), 91–118 (1969) MathSciNetCrossRefGoogle Scholar
  16. 16.
    Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a Nash equilibrium. In: STOC, pp. 71–78 (2006) Google Scholar
  17. 17.
    Daskalakis, C., Mehta, A., Papadimitriou, C.H.: A note on approximate Nash equilibria. In: WINE (2006) Google Scholar
  18. 18.
    Fiat, A., Kaplan, H., Levy, M., Olonetsky, S., Shabo, R.: On the price of stability for designing undirected networks with fair cost allocations. In: ICALP (1), pp. 608–618 (2006) Google Scholar
  19. 19.
    Fabrikant, A., Papadimitriou, C., Talwar, K.: On the complexity of pure equilibria. In: STOC (2004) Google Scholar
  20. 20.
    Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. In: STACS, pp. 404–413 (1999) Google Scholar
  21. 21.
    Lipton, R.J., Markakis, E., Mehta, A.: Playing large games using simple strategies. In: EC, pp. 36–41 (2003) Google Scholar
  22. 22.
    Milchtaich, I.: Congestion games with player-specific payoff functions. Games Econ. Behav. 13, 111–124 (1996) MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Monderer, D., Shapley, L.: Potential games. Games Econ. Behav. 14, 124–143 (1996) MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory. Cambridge University Press, Cambridge (2007) CrossRefzbMATHGoogle Scholar
  25. 25.
    Papadimitriou, C.H.: Algorithms, games, and the internet. In: STOC, pp. 749–753 (2001) Google Scholar
  26. 26.
    Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2, 65–67 (1973) CrossRefzbMATHGoogle Scholar
  27. 27.
    Roughgarden, T., Tardos, E.: How bad is selfish routing? J. ACM 49(2), 236–259 (2002) MathSciNetGoogle Scholar
  28. 28.
    Roughgarden, T., Tardos, E.: Bounding the inefficiency of equilibria in nonatomic congestion games. Games Econ. Behav. 47(2), 389–403 (2004) MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Roughgarden, T.: Selfish routing. Ph.D. Thesis, Cornell University, May 2002 Google Scholar
  30. 30.
    Roughgarden, T.: How unfair is optimal routing? In: SODA, pp. 203–204 (2002) Google Scholar
  31. 31.
    Roughgarden, T.: Selfish Routing and the Price of Anarchy. MIT Press, Cambridge (2005) Google Scholar
  32. 32.
    Skopalik, A., Vöcking, B.: Inapproximability of pure Nash equilibria. In: STOC, pp. 355–364 (2008) Google Scholar
  33. 33.
    Tsaknakis, H., Spirakis, P.G.: An optimization approach for approximate Nash equilibria. In: WINE, pp. 47–56 (2007) Google Scholar
  34. 34.
    Wardrop, J.G.: Some theoretical aspects of road traffic research. In: Proceedings of the Institute of Civil Engineers, Part II, vol. 1, pp. 325–378 (1952) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • George Christodoulou
    • 1
  • Elias Koutsoupias
    • 2
  • Paul G. Spirakis
    • 3
  1. 1.Department of Computer ScienceUniversity of SaarlandSaarbrückenGermany
  2. 2.Department of InformaticsUniversity of AthensAthensGreece
  3. 3.Computer Engineering and Informatics DepartmentPatras UniversityPatrasGreece

Personalised recommendations