, Volume 62, Issue 1–2, pp 102–129 | Cite as

Approximation Schemes for Packing Splittable Items with Cardinality Constraints

  • Leah Epstein
  • Asaf Levin
  • Rob van SteeEmail author


We continue the study of bin packing with splittable items and cardinality constraints. In this problem, a set of n items must be packed into as few bins as possible. Items may be split, but each bin may contain at most k (parts of) items, where k is some given parameter. Complicating the problem further is the fact that items may be larger than 1, which is the size of a bin. The problem is known to be strongly NP-hard for any fixed value of k.

We essentially close this problem by providing an efficient polynomial-time approximation scheme (EPTAS) for most of its versions. Namely, we present an efficient polynomial time approximation scheme for k=o(n). A PTAS for k=Θ(n) does not exist unless P = NP.

Additionally, we present dual approximation schemes for k=2 and for constant values of k. Thus we show that for any ε>0, it is possible to pack the items into the optimal number of bins in polynomial time, if the algorithm may use bins of size 1+ε.


Approximation schemes Bin packing Cardinality constraints 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Babel, L., Chen, B., Kellerer, H., Kotov, V.: Algorithms for on-line bin-packing problems with cardinality constraints. Discrete Appl. Math. 143(1–3), 238–251 (2004) CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Caprara, A., Kellerer, H., Pferschy, U.: Approximation schemes for ordered vector packing problems. Nav. Res. Logist. 92, 58–69 (2003) CrossRefMathSciNetGoogle Scholar
  3. 3.
    Cesati, M., Trevisan, L.: On the efficiency of polynomial time approximation schemes. Inf. Process. Lett. 64(4), 165–171 (1997) CrossRefMathSciNetGoogle Scholar
  4. 4.
    Chung, F., Graham, R., Mao, J., Varghese, G.: Parallelism versus memory allocation in pipelined router forwarding engines. Theory Comput. Syst. 39(6), 829–849 (2006) CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    de la Vega, W.F., Lueker, G.S.: Bin packing can be solved within 1 + epsilon in linear time. Combinatorica 1(4), 349–355 (1981) CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Frank, A., Tardos, É.: An application of simultaneous Diophantine approximation in combinatorial optimization. Combinatorica 7(1), 49–65 (1987) CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Epstein, L.: Online bin packing with cardinality constraints. SIAM J. Discrete Math. 20(4), 1015–1030 (2006) CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Epstein, L., Levin, A.: AFPTAS results for common variants of bin packing: a new method to handle the small items. SIAM J. Optim. (2010, in press) Google Scholar
  9. 9.
    Epstein, L., van Stee, R.: Approximation schemes for packing splittable items with cardinality constraints. In: Proc. of the 5th International Workshop on Approximation and Online Algorithms (WAOA2007), pp. 232–245 (2007) Google Scholar
  10. 10.
    Epstein, L., van Stee, R.: Improved results for a memory allocation problem. In: Proc. of the 10th International Workshop on Algorithms and Data Structures (WADS2007), pp. 362–373 (2007). Also in Theory Comput. Syst. (to appear) Google Scholar
  11. 11.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979) zbMATHGoogle Scholar
  12. 12.
    Graham, R.L., Mao, J.: Parallel resource allocation of splittable items with cardinality constraints. Preprint (2006) Google Scholar
  13. 13.
    Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling problems: theoretical and practical results. J. ACM 34(1), 144–162 (1987) MathSciNetGoogle Scholar
  14. 14.
    Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-dimensional bin-packing problem. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, pp. 312–320 (1982) Google Scholar
  15. 15.
    Kellerer, H., Pferschy, U.: Cardinality constrained bin-packing problems. Ann. Oper. Res. 92, 335–348 (1999) CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Krause, K.L., Shen, V.Y., Schwetman, H.D.: Analysis of several task-scheduling algorithms for a model of multiprogramming computer systems. J. ACM 22(4), 522–550 (1975) zbMATHMathSciNetGoogle Scholar
  17. 17.
    Krause, K.L., Shen, V.Y., Schwetman, H.D.: Errata: “Analysis of several task-scheduling algorithms for a model of multiprogramming computer systems”. J. ACM 24(3), 527–527 (1977) MathSciNetGoogle Scholar
  18. 18.
    Shachnai, H., Tamir, T., Yehezkely, O.: Approximation schemes for packing with item fragmentation. Theory Comput. Syst. 43(1), 81–98 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Shachnai, H., Yehezkely, O.: Fast asymptotic FPTAS for packing fragmentable items with costs. In: Proc. of the 16th International Symposium on Fundamentals of Computation Theory (FCT2007), pp. 482–493 (2007) Google Scholar
  20. 20.
    Simchi-Levi, D.: New worst-case results for the bin-packing problem. Nav. Res. Logist. 41(4), 579–585 (1994) CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of HaifaHaifaIsrael
  2. 2.Faculty of Industrial Engineering and ManagementThe TechnionHaifaIsrael
  3. 3.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations