Advertisement

Algorithmica

, Volume 62, Issue 1–2, pp 21–37 | Cite as

Biased Range Trees

  • Vida Dujmović
  • John Howat
  • Pat MorinEmail author
Article

Abstract

A data structure, called a biased range tree, is presented that preprocesses a set S of n points in ℝ2 and a query distribution D for 2-sided orthogonal range counting queries (a.k.a. dominance counting queries). The expected query time for this data structure, when queries are drawn according to D, matches, to within a constant factor, that of the optimal comparison tree for S and D. The memory and preprocessing requirements of the data structure are  O(nlog n).

Keywords

Computational geometry Data structures Orthogonal range searching Distribution-sensitive data structures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Afshani, P., Barbay, J., Chan, T.M.: Instance-optimal geometric algorithms. In: Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, pp. 129–138 (2009) Google Scholar
  2. 2.
    Agarwal, P.K., Erickson, J.: Geometric range searching and its relatives. In: Chazelle, B., Goodman, J.E., Pollack, R. (eds.) Advances in Discrete and Computational Geometry. Contemporary Mathematics, vol. 223, pp. 1–56. AMS, Providence (1999) Google Scholar
  3. 3.
    Alstrup, S., Brodal, G.S., Rauhe, T.: New data structures for orthogonal range searching. In: The 41st Annual Symposium on Foundations of Computer Science, pp. 198–207 (2000) Google Scholar
  4. 4.
    Arya, S., Cheng, S.W., Mount, D.M., Ramesh, H.: Efficient expected-case algorithms for planar point location. In: Proceedings of the 7th Scandinavian Workshop on Algorithm Theory, pp. 353–366 (2000) Google Scholar
  5. 5.
    Arya, S., Malamatos, T., Mount, D.M.: Nearly optimal expected-case planar point location. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, pp. 208–218 (2000) Google Scholar
  6. 6.
    Arya, S., Malamatos, T., Mount, D.M.: Entropy-preserving cuttings and space-efficient planar point location. In: Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 256–261 (2001) Google Scholar
  7. 7.
    Arya, S., Malamatos, T., Mount, D.M.: A simple entropy-based algorithm for planar point location. In: Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 262–268 (2001) Google Scholar
  8. 8.
    Arya, S., Malamatos, T., Mount, D.M., Wong, K.C.: Optimal expected-case planar point location. SIAM J. Comput. 37(2), 584–610 (2007) CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18, 509–517 (1975) CrossRefzbMATHGoogle Scholar
  10. 10.
    Bentley, J.L.: Multidimensional divide-and-conquer. Commun. ACM 23, 214–229 (1980) CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Chan, T.M., Pǎtrasçu, M.: Counting inversions, offline orthogonal range counting, and related problems. In: Proceedings of the 21st ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, pp. 161–173 (2010) Google Scholar
  12. 12.
    Chazelle, B.: Filtering search: a new approach to query-answering. SIAM J. Comput. 15, 703–724 (1986) CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Chazelle, B.: A functional approach to data structures and its use in multidimensional searching. SIAM J. Comput. 17, 427–462 (1988) CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Chazelle, B., Guibas, L.J.: Fractional cascading: I. A data structuring technique. Algorithmica 1, 133–162 (1986) CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Collette, S., Dujmović, V., Iacono, J., Langerman, S., Morin, P.: Distribution-sensitive point location in convex subdivisions. In: Proceedings of the 19th ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, pp. 912–921 (2008) Google Scholar
  16. 16.
    Collette, S., Dujmović, V., Iacono, J., Langerman, S., Morin, P.: Entropy, triangulation, and point location in planar subdivisions. Technical Report. arXiv:0905.3584 [cs], March 2009
  17. 17.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, third edn. MIT Press, Cambridge (2009) zbMATHGoogle Scholar
  18. 18.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications. Springer, Heidelberg (1997) zbMATHGoogle Scholar
  19. 19.
    Dujmović, V., Howat, J., Morin, P.: Biased range trees. In: Proceedings of the 20th ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, pp. 486–495 (2009) Google Scholar
  20. 20.
    Fredman, M.L.: A lower bound on the complexity of orthogonal range queries. J. ACM 28, 696–705 (1981) zbMATHMathSciNetGoogle Scholar
  21. 21.
    Iacono, J.: Optimal planar point location. In: Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 240–241 (2001) Google Scholar
  22. 22.
    Iacono, J.: Expected asymptotically optimal planar point location. Comput. Geom. Theory Appl. 29(1), 19–22 (2004) zbMATHMathSciNetGoogle Scholar
  23. 23.
    Jájá, J., Mortensen, C.W., Shi, Q.: Space-efficient and fast algorithms for multidimensional dominance counting and related problems. In: Proceedings of the 15th International Symposium on Algorithms and Computation, pp. 558–568 (2004) Google Scholar
  24. 24.
    Luecker, G.S.: A data structure for orthogonal range queries. In: Proceedings of the 19th Annual IEEE Symposium on Foundations of Computer Science, FOCS, pp. 28–34 (1978) Google Scholar
  25. 25.
    Mehlhorn, K.: Nearly optimal binary search trees. Acta Inform. 5, 287–295 (1975) CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Samet, H.: The Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading (1990) Google Scholar
  27. 27.
    Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 379–423 and 623–656 (1948) Google Scholar
  28. 28.
    Yao, A.C.: On the complexity of maintaining partial sums. SIAM J. Comput. 14, 277–288 (1985) CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of Computer ScienceCarleton UniversityOttawaCanada

Personalised recommendations