Advertisement

Algorithmica

, Volume 60, Issue 3, pp 569–592 | Cite as

Colored Simultaneous Geometric Embeddings and Universal Pointsets

  • Ulrik Brandes
  • Cesim Erten
  • Alejandro Estrella-Balderrama
  • J. Joseph FowlerEmail author
  • Fabrizio Frati
  • Markus Geyer
  • Carsten Gutwenger
  • Seok-Hee Hong
  • Michael Kaufmann
  • Stephen G. Kobourov
  • Giuseppe Liotta
  • Petra Mutzel
  • Antonios Symvonis
Article

Abstract

Universal pointsets can be used for visualizing multiple relationships on the same set of objects or for visualizing dynamic graph processes. In simultaneous geometric embeddings, the same point in the plane is used to represent the same object as a way to preserve the viewer’s mental map. In colored simultaneous embeddings this restriction is relaxed, by allowing a given object to map to a subset of points in the plane. Specifically, consider a set of graphs on the same set of n vertices partitioned into k colors. Finding a corresponding set of k-colored points in the plane such that each vertex is mapped to a point of the same color so as to allow a straight-line plane drawing of each graph is the problem of colored simultaneous geometric embedding.

For n-vertex paths, we show that there exist universal pointsets of size n, colored with two or three colors. We use this result to construct colored simultaneous geometric embeddings for a 2-colored tree together with any number of 2-colored paths, and more generally, a 2-colored outerplanar graph together with any number of 2-colored paths. For n-vertex trees, we construct small near-universal pointsets for 3-colored caterpillars of size n, 3-colored radius-2 stars of size n+3, and 2-colored spiders of size n. For n-vertex outerplanar graphs, we show that these same universal pointsets also suffice for 3-colored K 3-caterpillars, 3-colored K 3-stars, and 2-colored fans, respectively. We also present several negative results, showing that there exist a 2-colored planar graph and pseudo-forest, three 3-colored outerplanar graphs, four 4-colored pseudo-forests, three 5-colored pseudo-forests, five 5-colored paths, two 6-colored biconnected outerplanar graphs, three 6-colored cycles, four 6-colored paths, and three 9-colored paths that cannot be simultaneously embedded.

Keywords

Simultaneous embedding Simultaneous geometric embedding Colored simultaneous embedding Universal pointsets Graph drawing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abellanas, M., García, J., Hernández, G., Noy, M., Ramos, P.: Bipartite embeddings of trees in the plane. Discrete Appl. Math. 93(2–3), 141–148 (1999) CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Biedl, T.C.: Drawing planar partitions I: LL-drawings and LH-drawings. In: Proceedings of the Fourteenth Annual Symposium on Computational Geometry, SoCG 1998, pp. 287–296. ACM Press, New York (1998) CrossRefGoogle Scholar
  3. 3.
    Biedl, T.C., Kaufmann, M., Mutzel, P.: Drawing planar partitions. II. HH-drawings. In: Graph-Theoretic Concepts in Computer Science, Smolenice Castle, 1998. LNCS, vol. 1517, pp. 124–136. Springer, Berlin (1998) CrossRefGoogle Scholar
  4. 4.
    Bose, P.: On embedding an outer-planar graph in a point set. Comput. Geom.: Theory Appl. 23(3), 303–312 (2002) zbMATHGoogle Scholar
  5. 5.
    Brass, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov, S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous graph embedding. Comput. Geom.: Theory Appl. 36(2), 117–130 (2007) zbMATHMathSciNetGoogle Scholar
  6. 6.
    Chrobak, M., Kant, G.: Convex grid drawings of 3-connected planar graphs. Int. J. Comput. Geom. Appl. 7(3), 211–223 (1997) CrossRefMathSciNetGoogle Scholar
  7. 7.
    de Fraysseix, H., Pach, J., Pollack, R.: Small sets supporting Fary embeddings of planar graphs. In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing, STOC 1988, pp. 426–433 (1988) Google Scholar
  8. 8.
    de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990) CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Di Battista, G., Tamassia, R.: Algorithms for plane representation of acyclic digraphs. Theor. Comput. Sci. 61(23), 175–198 (1988) CrossRefzbMATHGoogle Scholar
  10. 10.
    Dux, B., Iyer, A., Debray, S., Forrester, D., Kobourov, S.G.: Visualizing the behavior of dynamically modifiable code. In: 13th Workshop on Program Comprehension, pp. 337–340 (2005) Google Scholar
  11. 11.
    Erten, C., Kobourov, S.G.: Simultaneous embedding of planar graphs with few bends. J. Graph Algorithms Appl. 9(3), 347–364 (2005) zbMATHMathSciNetGoogle Scholar
  12. 12.
    Estrella-Balderrama, A., Fowler, J.J., Kobourov, S.G.: Characterization of unlabeled level planar trees. Comput. Geom.: Theory Appl. 42(7), 704–721 (2009) zbMATHMathSciNetGoogle Scholar
  13. 13.
    Fowler, J.J., Kobourov, S.G.: Minimum level nonplanar patterns for trees. In: 15th Symposium on Graph Drawing, GD 2007. LNCS, vol. 4875, pp. 69–75. Springer, Berlin (2008) Google Scholar
  14. 14.
    Fowler, J.J., Jünger, M., Kobourov, S.G., Schulz, M.: Characterizations of restricted pairs of planar graphs allowing simultaneous embedding with fixed edges. In: 34th International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2008. LNCS, vol. 5344, pp. 146–158. Springer, Berlin (2008) CrossRefGoogle Scholar
  15. 15.
    Frati, F.: Embedding graphs simultaneously with fixed edges. In: 14th Symposium on Graph Drawing, GD 2006. LNCS, vol. 4372, pp. 108–113. Springer, Berlin (2007) Google Scholar
  16. 16.
    Frati, F., Kaufmann, M., Kobourov, S.G.: Constrained simultaneous and near-simultaneous embeddings. In: 15th Symposium on Graph Drawing, GD 2007. LNCS, vol. 4875, pp. 268–279. Springer, Berlin (2008) Google Scholar
  17. 17.
    Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation with vertices at specified points. Am. Math. Mon. 98, 165–166 (1991) CrossRefMathSciNetGoogle Scholar
  18. 18.
    Healy, P., Kuusik, A., Leipert, S.: Characterization of level non-planar graphs by minimal patterns. In: 6th Computing and Combinatorics Conference, COCOON 2000, pp. 74–84 (2000) Google Scholar
  19. 19.
    Kaufmann, M., Vrto, I., Geyer, M.: Two trees which are self-intersecting when drawn simultaneously. In: 13th Symposium on Graph Drawing, GD 2005. LNCS, vol. 3843, pp. 201–210. Springer, Berlin (2006) Google Scholar
  20. 20.
    Kuratowski, C.: Sur les problèmes des courbes gauches en Topologie. Fundam. Math. 15, 271–283 (1930) zbMATHGoogle Scholar
  21. 21.
    Rosenstiehl, P., Tarjan, R.E.: Rectilinear planar layouts and bipolar orientations of planar graphs. Discrete Comput. Geom. 1(4), 343–353 (1986) CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Ulrik Brandes
    • 1
  • Cesim Erten
    • 2
  • Alejandro Estrella-Balderrama
    • 3
  • J. Joseph Fowler
    • 3
    Email author
  • Fabrizio Frati
    • 4
  • Markus Geyer
    • 5
  • Carsten Gutwenger
    • 6
  • Seok-Hee Hong
    • 7
  • Michael Kaufmann
    • 5
  • Stephen G. Kobourov
    • 3
  • Giuseppe Liotta
    • 8
  • Petra Mutzel
    • 6
  • Antonios Symvonis
    • 9
  1. 1.Department of Computer & Information ScienceUniversity of KonstanzKonstanzGermany
  2. 2.Department of Computer ScienceIsik UniversityIstanbulTurkey
  3. 3.Department of Computer ScienceUniversity of ArizonaTucsonUSA
  4. 4.Department of Computer ScienceUniversity of Roma TreRomeItaly
  5. 5.Wilhelm-Schickard-Institute of Computer ScienceUniversity of TübingenTübingenGermany
  6. 6.Department of Computer ScienceUniversity of DortmundDortmundGermany
  7. 7.NICTA Ltd. and School of Information TechnologiesUniversity of SydneySydneyAustralia
  8. 8.School of ComputingUniversity of PerugiaPerugiaItaly
  9. 9.School of Applied Mathematics & Physical SciencesNational Technical University of AthensAthensGreece

Personalised recommendations