Advertisement

Algorithmica

, Volume 61, Issue 3, pp 674–693 | Cite as

Preprocessing Imprecise Points for Delaunay Triangulation: Simplified and Extended

  • Kevin Buchin
  • Maarten Löffler
  • Pat Morin
  • Wolfgang Mulzer
Open Access
Article

Abstract

Suppose we want to compute the Delaunay triangulation of a set P whose points are restricted to a collection ℛ of input regions known in advance. Building on recent work by Löffler and Snoeyink, we show how to leverage our knowledge of ℛ for faster Delaunay computation. Our approach needs no fancy machinery and optimally handles a wide variety of inputs, e.g., overlapping disks of different sizes and fat regions.

Keywords

Delaunay triangulation Data imprecision Quadtree 

References

  1. 1.
    Aronov, B., Har-Peled, S.: On approximating the depth and related problems. SIAM J. Comput. 38(3), 899–921 (2008) MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bandyopadhyay, D., Snoeyink, J.: Almost-Delaunay simplices: nearest neighbor relations for imprecise points. In: Proc. 15th Annu. ACM-SIAM Sympos. Discrete Algorithms (SODA), pp. 403–412 (2004) Google Scholar
  3. 3.
    Ben-Or, M.: Lower bounds for algebraic computation trees. In: Proc. 16th Annu. ACM Sympos. Theory Comput. (STOC), pp. 80–86 (1983) Google Scholar
  4. 4.
    de Berg, M.: Linear size binary space partitions for uncluttered scenes. Algorithmica 28(3), 353–366 (2000) MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Berlin (2008) zbMATHGoogle Scholar
  6. 6.
    de Berg, M., David, H., Katz, M.J., Overmars, M.H., van der Stappen, A.F., Vleugels, J.: Guarding scenes against invasive hypercubes. Comput. Geom. Theory Appl. 26(2), 99–117 (2003) zbMATHGoogle Scholar
  7. 7.
    de Berg, M., van der Stappen, A.F., Vleugels, J., Katz, M.J.: Realistic input models for geometric algorithms. Algorithmica 34(1), 81–97 (2002) MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bern, M., Eppstein, D., Gilbert, J.: Provably good mesh generation. J. Comput. Syst. Sci. 48(3), 384–409 (1994) MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bern, M., Eppstein, D., Teng, S.H.: Parallel construction of quadtrees and quality triangulations. Int. J. Comput. Geom. Appl. 9(6), 517–532 (1999) MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bruce, R., Hoffmann, M., Krizanc, D., Raman, R.: Efficient update strategies for geometric computing with uncertainty. Theory Comput. Syst. 38(4), 411–423 (2005) MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Buchin, K., Mulzer, W.: Delaunay triangulations in O(sort(n)) time and more. In: Proc. 50th Annu. IEEE Sympos. Found. Comput. Sci. (FOCS), pp. 139–148 (2009) Google Scholar
  12. 12.
    Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields. J. ACM 42(1), 67–90 (1995) MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Chan, T.M.: Well-separated pair decomposition in linear time? Inform. Process. Lett. 107(5), 138–141 (2008) MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Chazelle, B.: Triangulating a simple polygon in linear time. Discrete Comput. Geom. 6, 485–524 (1991) MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Chazelle, B., Devillers, O., Hurtado, F., Mora, M., Sacristán, V., Teillaud, M.: Splitting a Delaunay triangulation in linear time. Algorithmica 34(1), 39–46 (2002) MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Chazelle, B., Mulzer, W.: Computing hereditary convex structures. In: Proc. 25th Annu. ACM Sympos. Comput. Geom. (SoCG), pp. 61–70 (2009) Google Scholar
  17. 17.
    Clarkson, K.L., Seshadhri, C.: Self-improving algorithms for Delaunay triangulations. In: Proc. 24th Annu. ACM Sympos. Comput. Geom. (SoCG), pp. 148–155 (2008) Google Scholar
  18. 18.
    Djidjev, H.N., Lingas, A.: On computing Voronoi diagrams for sorted point sets. Int. J. Comput. Geom. Appl. 5(3), 327–337 (1995) MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Eppstein, D.: Approximating the minimum weight Steiner triangulation. Discrete Comput. Geom. 11(2), 163–191 (1994) MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Finkel, R.A., Bentley, J.L.: Quad trees: a data structure for retrieval on composite keys. Acta Inform. 4(1), 1–9 (1974) CrossRefzbMATHGoogle Scholar
  21. 21.
    Franciosa, P.G., Gaibisso, C., Gambosi, G., Talamo, M.: A convex hull algorithm for points with approximately known positions. Int. J. Comput. Geom. Appl. 4(2), 153–163 (1994) MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Guibas, L.J., Salesin, D., Stolfi, J.: Epsilon geometry: building robust algorithms from imprecise computations. In: Proc. 5th Annu. ACM Sympos. Comput. Geom. (SoCG), pp. 208–217 (1989) Google Scholar
  23. 23.
    Guibas, L.J., Salesin, D., Stolfi, J.: Constructing strongly convex approximate hulls with inaccurate primitives. Algorithmica 9, 534–560 (1993) MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Held, M., Mitchell, J.S.B.: Triangulating input-constrained planar point sets. Inform. Process. Lett. 109(1), 54–56 (2008) MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kirkpatrick, D.G.: Efficient computation of continuous skeletons. In: Proc. 20th Annu. IEEE Sympos. Found. Comput. Sci. (FOCS), pp. 18–27 (1979) Google Scholar
  26. 26.
    van Kreveld, M., Löffler, M.: Largest bounding box, smallest diameter, and related problems on imprecise points. Comput. Geom. Theory Appl. 43(4), 419–433 (2010) zbMATHGoogle Scholar
  27. 27.
    van Kreveld, M.J., Löffler, M., Mitchell, J.S.B.: Preprocessing imprecise points and splitting triangulations. In: Proc. 19th Annu. Internat. Sympos. Algorithms Comput. (ISAAC), pp. 544–555 (2008) Google Scholar
  28. 28.
    Kruger, H.: Basic measures for imprecise point sets in ℝd. Master’s thesis, Utrecht University (2008) Google Scholar
  29. 29.
    Löffler, M., Snoeyink, J.: Delaunay triangulation of imprecise points in linear time after preprocessing. Comput. Geom. Theory Appl. 43(3), 234–242 (2010) zbMATHGoogle Scholar
  30. 30.
    Nagai, T., Tokura, N.: Tight error bounds of geometric problems on convex objects with imprecise coordinates. In: Jap. Conf. on Discrete and Comput. Geom. LNCS, vol. 2098, pp. 252–263. Springer, Berlin (2000) CrossRefGoogle Scholar
  31. 31.
    Ostrovsky-Berman, Y., Joskowicz, L.: Uncertainty envelopes. In: Proc. 21st European Workshop Comput. Geom. (EWCG), pp. 175–178 (2005) Google Scholar
  32. 32.
    van der Stappen, A.F.: Motion planning amidst fat obstacles. Ph.D. thesis, Dept. Comput. Sci., Utrecht Univ., Utrecht, the Netherlands (1994) Google Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • Kevin Buchin
    • 1
  • Maarten Löffler
    • 2
  • Pat Morin
    • 3
  • Wolfgang Mulzer
    • 4
  1. 1.Dept. of Mathematics and Computer ScienceTU EindhovenEindhovenThe Netherlands
  2. 2.Computer Science DepartmentUniversity of CaliforniaIrvineUSA
  3. 3.School of Computer ScienceCarleton UniversityOttawaCanada
  4. 4.Department of Computer SciencePrinceton UniversityPrincetonUSA

Personalised recommendations