Advertisement

Algorithmica

, Volume 61, Issue 4, pp 817–838 | Cite as

Faster Parameterized Algorithms for Minimum Fill-in

  • Hans L. Bodlaender
  • Pinar Heggernes
  • Yngve Villanger
Article

Abstract

We present two parameterized algorithms for the Minimum Fill-in problem, also known as Chordal Completion: given an arbitrary graph G and integer k, can we add at most k edges to G to obtain a chordal graph? Our first algorithm has running time \(\mathcal {O}(k^{2}nm+3.0793^{k})\), and requires polynomial space. This improves the base of the exponential part of the best known parameterized algorithm time for this problem so far. We are able to improve this running time even further, at the cost of more space. Our second algorithm has running time \(\mathcal {O}(k^{2}nm+2.35965^{k})\) and requires \(\mathcal {O}^{\ast}(1.7549^{k})\) space. To achieve these results, we present a new lemma describing the edges that can safely be added to achieve a chordal completion with the minimum number of edges, regardless of k.

Keywords

Minimum Fill-in Parameterized algorithms Chordal graphs Fixed parameter tractability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berry, A., Bordat, J.: Moplex elimination orderings. Electron. Notes Discrete Math. 8, 6–9 (2001) MathSciNetCrossRefGoogle Scholar
  2. 2.
    Berry, A., Heggernes, P., Villanger, Y.: A vertex incremental approach for maintaining chordality. Discrete Math. 306, 318–336 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bouchitté, V., Todinca, I.: Listing all potential maximal cliques of a graph. Theor. Comput. Sci. 276, 17–32 (2002) zbMATHCrossRefGoogle Scholar
  4. 4.
    Buneman, P.: A characterization of rigid circuit graphs. Discrete Math. 9, 205–212 (1974) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett. 58, 171–176 (1996) zbMATHCrossRefGoogle Scholar
  6. 6.
    Chung, F.R.K., Mumford, D.: Chordal completions of planar graphs. J. Comb. Theory, Ser. B 31, 96–106 (1994) MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dirac, G.A.: On rigid circuit graphs. Abh. Math. Semin. Univ. Hamb. 25, 71–76 (1961) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999) CrossRefGoogle Scholar
  9. 9.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, New York (2006) Google Scholar
  10. 10.
    Fomin, F.V., Villanger, Y.: Treewidth computation and extremal combinatorics. In: Proceedings of the 35th International Colloquium on Automata, Languages and Programming, ICALP 2008. Lecture Notes in Computer Science, vol. 5125, pp. 210–221. Springer, Berlin (2008) CrossRefGoogle Scholar
  11. 11.
    Fomin, F.V., Kratsch, D., Todinca, I., Villanger, Y.: Exact algorithms for treewidth and minimum fill-in. SIAM J. Comput. 38(3), 1058–1079 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pac. J. Math. 15, 835–855 (1965) MathSciNetzbMATHGoogle Scholar
  13. 13.
    Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal graphs. J. Comb. Theory, Ser. B 16, 47–56 (1974) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980) zbMATHGoogle Scholar
  15. 15.
    Heggernes, P.: Minimal triangulations of graphs: a survey. Discrete Math. 306, 297–317 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of parameterized completion problems on chordal and interval graphs: minimum fill-in and physical mapping. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, FOCS’94, pp. 780–791. IEEE Comput. Sci., Los Alamitos (1994) Google Scholar
  17. 17.
    Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of parameterized completion problems on chordal, strongly chordal, and proper interval graphs. SIAM J. Comput. 28, 1906–1922 (1999) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their applications to expert systems. J. R. Stat. Soc., Ser. B 50, 157–224 (1988) MathSciNetzbMATHGoogle Scholar
  19. 19.
    Lekkerkerker, C., Boland, J.: Representation of a finite graph by a set of intervals on the real line. Fundam. Math. 51, 45–64 (1962) MathSciNetzbMATHGoogle Scholar
  20. 20.
    Natanzon, A., Shamir, R., Sharan, R.: A polynomial approximation algorithm for the minimum fill-in problem. SIAM J. Comput. 30, 1067–1079 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, London (2006) zbMATHCrossRefGoogle Scholar
  22. 22.
    Parra, A., Scheffler, P.: Characterizations and algorithmic applications of chordal graph embeddings. Discrete Appl. Math. 79, 171–188 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Rose, D.J.: Triangulated graphs and the elimination process. J. Math. Anal. Appl. 32, 597–609 (1970) MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13, 566–579 (1984) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Walter, J.: Representations of rigid cycle graphs. Ph.D. thesis, Wayne State University, USA, 1972 Google Scholar
  26. 26.
    Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Algebraic Discrete Methods 2, 77–79 (1981) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Hans L. Bodlaender
    • 1
  • Pinar Heggernes
    • 2
  • Yngve Villanger
    • 2
  1. 1.Department of Information and Computing SciencesUtrecht UniversityUtrechtthe Netherlands
  2. 2.Department of InformaticsUniversity of BergenBergenNorway

Personalised recommendations