, Volume 60, Issue 1, pp 46–59 | Cite as

An Almost Space-Optimal Streaming Algorithm for Coresets in Fixed Dimensions

  • Hamid Zarrabi-Zadeh


We present a new streaming algorithm for maintaining an ε-kernel of a point set in ℝ d using O((1/ε (d−1)/2)log (1/ε)) space. The space used by our algorithm is optimal up to a small logarithmic factor. This significantly improves (for any fixed dimension d 3) the best previous algorithm for this problem that uses O(1/ε d−(3/2)) space, presented by Agarwal and Yu. Our algorithm immediately improves the space complexity of the previous streaming algorithms for a number of fundamental geometric optimization problems in fixed dimensions, including width, minimum-volume bounding box, minimum-radius enclosing cylinder, minimum-width enclosing annulus, etc.


Approximation algorithms Data streams Geometric optimization problems Coresets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, P.K., Har-Peled, S.: Maintaining approximate extent measures of moving points. In: Proc. 12th ACM-SIAM Sympos. Discrete Algorithms, pp. 148–157 (2001) Google Scholar
  2. 2.
    Agarwal, P.K., Yu, H.: A space-optimal data-stream algorithm for coresets in the plane. In: Proc. 23rd Annu. ACM Sympos. Comput. Geom., pp. 1–10 (2007) Google Scholar
  3. 3.
    Agarwal, P.K., Matoušek, J., Suri, S.: Farthest neighbors, maximum spanning trees and related problems in higher dimensions. Comput. Geom. Theory Appl. 1(4), 189–201 (1992) zbMATHGoogle Scholar
  4. 4.
    Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Approximating extent measures of points. J. ACM 51(4), 606–635 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Geometric approximation via coresets. In: Goodman, J.E., Pach, J., Welzl, E. (eds.) Combinatorial and Computational Geometry. Math. Sci. Research Inst. Pub., Cambridge (2005) Google Scholar
  6. 6.
    Agarwal, P.K., Har-Peled, S., Yu, H.: Robust shape fitting via peeling and grating coresets. Discrete Comput. Geom. 39(1–3), 38–58 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Barequet, G., Har-Peled, S.: Efficiently approximating the minimum-volume bounding box of a point set in three dimensions. J. Algorithms 38(1), 91–109 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bentley, J.L., Saxe, J.B.: Decomposable searching problems I: Static-to-dynamic transformations. J. Algorithms 1, 301–358 (1980) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Chan, T.M.: Faster core-set constructions and data stream algorithms in fixed dimensions. Comput. Geom. Theory Appl. 35(1–2), 20–35 (2006) zbMATHGoogle Scholar
  10. 10.
    Frahling, G., Sohler, C.: Coresets in dynamic geometric data streams. In: Proc. 37th Annu. ACM Sympos. Theory Comput., pp. 209–217 (2005) Google Scholar
  11. 11.
    Har-Peled, S., Mazumdar, S.: On coresets for k-means and k-median clustering. In: Proc. 36th Annu. ACM Sympos. Theory Comput., pp. 291–300 (2004) Google Scholar
  12. 12.
    Har-Peled, S., Wang, Y.: Shape fitting with outliers. SIAM J. Comput. 33(2), 269–285 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, New York (1985) Google Scholar
  14. 14.
    Yu, H., Agarwal, P.K., Poreddy, R., Varadarajan, K.R.: Practical methods for shape fitting and kinetic data structures using core sets. In: Proc. 20th Annu. ACM Sympos. Comput. Geom., pp. 263–272 (2004) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations