Algorithmica

, Volume 60, Issue 4, pp 890–937 | Cite as

Finding a Minimum-depth Embedding of a Planar Graph in O(n 4) Time

  • Patrizio Angelini
  • Giuseppe Di Battista
  • Maurizio Patrignani
Article

Abstract

Consider an n-vertex planar graph G. The depth of an embedding Γ of G is the maximum distance of its internal faces from the external one. Several researchers pointed out that the quality of a planar embedding can be measured in terms of its depth. We present an O(n 4)-time algorithm for computing an embedding of G with minimum depth. This bound improves on the best previous bound by an O(nlog n) factor. As a side effect, our algorithm improves the bounds of several algorithms that require the computation of a minimum-depth embedding.

Planar embedding Minimum depth Planar graph Triconnected components 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41, 153–180 (1994) MATHCrossRefGoogle Scholar
  2. 2.
    Bienstock, D., Monma, C.L.: On the complexity of covering vertices by faces in a planar graph. SIAM J. Comput. 17, 53–76 (1988) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bienstock, D., Monma, C.L.: On the complexity of embedding planar graphs to minimize certain distance measures. Algorithmica 5(1), 93–109 (1990) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25(5), 956–997 (1996) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Di Giacomo, E., Didimo, W., Liotta, G., Meijer, H.: Computing radial drawings on the minimum number of circles. J. Graph Algorithms Appl. 9, 365–389 (2005) MathSciNetMATHGoogle Scholar
  6. 6.
    Dolev, D., Leighton, F.T., Trickey, H.: Planar embedding of planar graphs. Adv. Comput. Res. 2, 147–161 (1984) Google Scholar
  7. 7.
    Kammer, F.: Determining the smallest k such that g is k-outerplanar. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA’07. LNCS, vol. 4698, pp. 359–370. Springer, Berlin (2007) Google Scholar
  8. 8.
    Pizzonia, M.: Minimum depth graph embeddings and quality of the drawings: An experimental analysis. In: Healy, P., Nikolov, N.S. (eds.) Graph Drawing ’05. LNCS, vol. 3843, pp. 397–408. Springer, Berlin (2005) CrossRefGoogle Scholar
  9. 9.
    Pizzonia, M., Tamassia, R.: Minimum depth graph embedding. In: Paterson, M. (ed.) ESA ’00. LNCS, vol. 1879, pp. 356–367. Springer, Berlin (2000) CrossRefGoogle Scholar
  10. 10.
    Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Comb. Theory, Ser. B 36(1), 49–64 (1984) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Thorup, M.: Undirected single-source shortest path with positive integer weights in linear time. J. ACM 46(3), 362–394 (1999) MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Patrizio Angelini
    • 1
  • Giuseppe Di Battista
    • 1
  • Maurizio Patrignani
    • 1
  1. 1.Dipartimento di Informatica e AutomazioneUniversità Roma TreRomeItaly

Personalised recommendations