Advertisement

Algorithmica

, Volume 60, Issue 4, pp 853–876 | Cite as

Permutation Betting Markets: Singleton Betting with Extra Information

  • Mohammad Ghodsi
  • Hamid MahiniEmail author
  • Vahab S. Mirrokni
  • Morteza Zadimoghaddam
Article
  • 113 Downloads

Abstract

We study permutation betting markets, introduced by Chen et al. (Proceedings of the ACM Conference on Electronic Commerce, 2007). For these markets, we consider subset bettings in which each trader can bet on a subset of candidates ending up in a subset of positions. We consider the revenue maximization problem for the auctioneer in two main frameworks: the risk-free revenue maximization (studied in Chen et al., Proceedings of the ACM Conference on Electronic Commerce, 2007), and the probabilistic revenue maximization. We also explore the use of some certain knowledge or extra information about the possible outcomes of the market. We first show that finding the optimal revenue in the risk-free model for the subset betting problem is inapproximable. This resolves an open question posed by Chen et al. (Proceedings of the ACM Conference on Electronic Commerce, 2007). In order to identify solvable variants of the problem, we propose the singleton betting language which allows traders to bet an arbitrary value on one candidate for one position. For singleton bettings, we first provide a linear-time implementable necessary and sufficient condition for existence of a solution with positive revenue for any possible outcome. Furthermore, we develop an LP-based polynomial-time algorithm to find the optimum solution of this problem. In addition, we show how to extend this LP-based method to handle some extra information about the possible outcomes. Finally, we consider the revenue maximization problem in a probabilistic setting. For this variant, we observe that the problem of maximizing the expected revenue is polynomial-time solvable, but we show that maximizing the probability of achieving a pre-specified revenue is #P-Complete.

Prediction markets Revenue maximization Betting markets Linear programming Combinatorial algorithms Matching markets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, Y., Fortnow, L., Nikolova, E., Pennock, D.: Betting on permutations. In: Proceedings of the ACM Conference on Electronic Commerce (2007) Google Scholar
  2. 2.
    Plott, C., Sunder, S.: Efficiency of experimental security markets with insider information: An application of rational expectations models. J. Polit. Econ. 90, 663–698 (1982) CrossRefGoogle Scholar
  3. 3.
    Plott, C., Sunder, S.: Rational expectations and the aggregation of diverse information in laboratory security markets. Econometrica 56, 1085–1118 (1988) CrossRefGoogle Scholar
  4. 4.
    Berg, J.E., Forsythe, R., Nelson, F.D., Rietz, T.A.: Results from a dozen years of election futures markets research. In: Plott, C.A., Smith, V. (eds.) Handbook of Experimental Economic Results. Elsevier, North-Holland (2001) Google Scholar
  5. 5.
    Forsythe, R., Rietz, T.A., Ross, T.W.: Wishes, expectations, and actions: A survey on price formation in election stock markets. J. Econ. Behav. Organ. 39, 83–110 (1999) CrossRefGoogle Scholar
  6. 6.
    Pennock, D.M., Lawrence, S., Giles, C.L., Nielsen, F.A.: The real power of artificial markets. Science 291, 987–988 (2002) CrossRefGoogle Scholar
  7. 7.
    Dhamdhere, K., Goyal, V., Ravi, R., Singh, M.: How to pay, come what may: Approximation algorithms for demand-robust covering problems. In: Proceedings of the Annual Symposium on Foundations of Computer Science (FOCS) (2005) Google Scholar
  8. 8.
    Ghodsi, M., Mahini, H., Mirrokni, V.S., Zadimoghaddam, M.: Permutation betting markets: singleton betting with extra information. In: Proceedings of the ACM Conference on Electronic Commerce (2008) Google Scholar
  9. 9.
    Nikulin, Y.: Robustness in combinatorial optimization and scheduling theory: An annotated bibliography. Technical Report SOR-91-13, Statistics and Operation Research (2004) Google Scholar
  10. 10.
    Feige, U., Jain, K., Mahdian, M., Mirrokni, V.S: Robust combinatorial optimization with exponential number of scenarios. In: Proceedings of the Conference on Integer Programming and Combinatorial Optimization (2007) Google Scholar
  11. 11.
    Immorlica, N., Karger, D., Minkoff, M., Mirrokni, V.S.: On the costs and benefits of procrastination: Approximation algorithms for stochastic combinatorial optimization problems. In: Proceedings Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (2004) Google Scholar
  12. 12.
    Gupta, A., Pal, M., Ravi, R., Sinha, A.: Boosted sampling: Approximation algorithms for stochastic optimization. In: Proceedings of the Annual ACM Symposium on Theory of Computing (STOC) (2004) Google Scholar
  13. 13.
    Shmoys, D., Swamy, S.: Stochastic optimization is (almost) as easy as deterministic optimization. In: Proceedings of the Annual Symposium on Foundations of Computer Science (FOCS) (2004) Google Scholar
  14. 14.
    Pennock, D.: Personal communications Google Scholar
  15. 15.
    Fortnow, L., Kilian, J., Pennock, D., Wellman, M.P.: Betting boolean-style: A framework for trading in securities based on logical formulas. Decis. Support Syst. 39(1), 87–104 (2004) Google Scholar
  16. 16.
    Hanson, R.D.: Combinatorial information market design. Inf. Syst. Front. 5(1), 107–119 (2003) CrossRefGoogle Scholar
  17. 17.
    Cramton, P., Shoham, Y., Steinberg, R.: Combinatorial Auctions. MIT Press, Cambridge (2005) Google Scholar
  18. 18.
    Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.: Algorithmic Game Theory. Cambridge University Press, Cambridge (2007) zbMATHGoogle Scholar
  19. 19.
    Lehmann, B., Lehmann, D., Nisan, N.: Combinatorial auctions with decreasing marginal utilities. In: Proceedings of the ACM Conference on Electronic Commerce (EC) (2001) Google Scholar
  20. 20.
    Sandholm, T.: Algorithm for optimal winner determination in combinatorial auctions. Artif. Intell. 135, 1–54 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Feige, U.: On maximizing welfare when utility functions are subadditive. In: Proceedings of the Annual ACM Symposium on Theory of Computing (STOC) (2006) Google Scholar
  22. 22.
    Schrijver, A.: Total dual integrality of matching forest constraints. Combinatorica 20, 575–588 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Dover, New York (1998) zbMATHGoogle Scholar
  24. 24.
    Schrijver, A.: Combinatorial Optimization—Polyhedra and Efficiency. Springer, Berlin (2003) zbMATHGoogle Scholar
  25. 25.
    Heller, I., Tompkins, C.B.: An extension of a theorem of Dantzig’s. In: Kuhn, H.W., Tucker, A.W. (eds.) Linear Inequalities and Related Systems, pp. 247–254. Princeton University Press, Princeton (1956) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Mohammad Ghodsi
    • 1
  • Hamid Mahini
    • 1
    Email author
  • Vahab S. Mirrokni
    • 2
  • Morteza Zadimoghaddam
    • 1
  1. 1.Department of Computer EngineeringSharif University of TechnologyTehrenIran
  2. 2.Microsoft ResearchRedmondUSA

Personalised recommendations