, Volume 60, Issue 4, pp 735–742 | Cite as

Approximating Minimum-Power Degree and Connectivity Problems

  • Guy KortsarzEmail author
  • Vahab S. Mirrokni
  • Zeev Nutov
  • Elena Tsanko


Power optimization is a central issue in wireless network design. Given a graph with costs on the edges, the power of a node is the maximum cost of an edge incident to it, and the power of a graph is the sum of the powers of its nodes. Motivated by applications in wireless networks, we consider several fundamental undirected network design problems under the power minimization criteria. Given a graph \(\mathcal{G}=(V,\mathcal{E})\) with edge costs {c(e):e∈ℰ} and degree requirements {r(v):vV}, the \(\textsf{Minimum-Power Edge-Multi-Cover}\) (\(\textsf{MPEMC}\) ) problem is to find a minimum-power subgraph G of \(\mathcal{G}\) so that the degree of every node v in G is at least r(v). We give an O(log n)-approximation algorithms for \(\textsf{MPEMC}\) , improving the previous ratio O(log 4 n). This is used to derive an O(log n+α)-approximation algorithm for the undirected \(\textsf{Minimum-Power $k$-Connected Subgraph}\) (\(\textsf{MP$k$CS}\) ) problem, where α is the best known ratio for the min-cost variant of the problem. Currently, \(\alpha=O(\log k\cdot \log\frac{n}{n-k})\) which is O(log k) unless k=no(n), and is O(log 2 k)=O(log 2 n) for k=no(n). Our result shows that the min-power and the min-cost versions of the \(\textsf{$k$-Connected Subgraph}\) problem are equivalent with respect to approximation, unless the min-cost variant admits an o(log n)-approximation, which seems to be out of reach at the moment.


Power Graphs Wireless Degree k-connectivity Approximation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Althaus, E., Calinescu, G., Mandoiu, I., Prasad, S., Tchervenski, N., Zelikovsky, A.: Power efficient range assignment for symmetric connectivity in static ad-hoc wireless networks. Wirel. Netw. 12(3), 287–299 (2006) CrossRefGoogle Scholar
  2. 2.
    Calinescu, G., Kapoor, S., Olshevsky, A., Zelikovsky, A.: Network lifetime and power assignment in ad hoc wireless networks. In: ESA, pp. 114–126 (2003) Google Scholar
  3. 3.
    Calinescu, G., Wan, P.J.: Range assignment for biconnectivity and k-edge connectivity in wireless ad hoc networks. Mob. Netw. Appl. 11(2), 121–128 (2006) CrossRefGoogle Scholar
  4. 4.
    Clementi, A.E.F., Penna, P., Silvestri, R.: Hardness results for the power range assignment problem in packet radio networks. In: APPROX, pp. 197–208 (1999) Google Scholar
  5. 5.
    Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Scrijver, A.: Combinatorial Optimization. Wiley, New York (1998) zbMATHGoogle Scholar
  6. 6.
    Feige, U., Kortsarz, G., Peleg, D.: The dense k-subgraph problem. Algorithmica, 410–421 (2001) Google Scholar
  7. 7.
    Hajiaghayi, M.T., Kortsarz, G., Mirrokni, V.S., Nutov, Z.: Power optimization for connectivity problems. Math. Program. 110(1), 195–208 (2007). Preliminary version in IPCO 2005 MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Jia, X., Kim, D., Makki, S., Wan, P.-J., Yi, C.-W.: Power assignment for k-connectivity in wireless ad hoc networks. J. Comb. Optim. 9(2), 213–222 (2005). Preliminary version in INFOCOM 2005 MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Johnson, D.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9(3), 256–278 (1974) zbMATHCrossRefGoogle Scholar
  10. 10.
    Khuller, S.: Approximation algorithms for finding highly connected subgraphs. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-Hard Problems, pp. 236–265. PWS, Boston (1995). Chapter 6 Google Scholar
  11. 11.
    Kortsarz, G., Nutov, Z.: Approximating minimum-cost connectivity problems. In: Gonzalez, T.F. (ed.) Approximation Algorithms and Metaheuristics. Chapman & Hall/CRC, London (2007). Chapter 58 Google Scholar
  12. 12.
    Lando, Y., Nutov, Z.: On minimum power connectivity problems. In: ESA, pp. 87–98 (2007) Google Scholar
  13. 13.
    Nutov, Z.: Approximating minimum power covers of intersecting families and directed connectivity problems. In: APPROX, pp. 236–247 (2006) Google Scholar
  14. 14.
    Nutov, Z.: Approximating minimum power k-connectivity. In: Ad-Hoc-NOW, pp. 86–93 (2008) Google Scholar
  15. 15.
    Nutov, Z.: An almost O(log k)-approximation for k-connected subgraphs. In: SODA, pp. 912–921 (2009) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Guy Kortsarz
    • 1
    Email author
  • Vahab S. Mirrokni
    • 2
  • Zeev Nutov
    • 3
  • Elena Tsanko
    • 4
  1. 1.Rutgers UniversityCamdenUSA
  2. 2.Google ResearchNew YorkUSA
  3. 3.The Open University of IsraelRaananaIsrael
  4. 4.IBMHaifaIsrael

Personalised recommendations