Algorithmica

, Volume 60, Issue 2, pp 451–463 | Cite as

Improved Approximations for Guarding 1.5-Dimensional Terrains

  • Khaled Elbassioni
  • Erik Krohn
  • Domagoj Matijević
  • Julián Mestre
  • Domagoj Ševerdija
Open Access
Article

Abstract

We present a 4-approximation algorithm for the problem of placing the fewest guards on a 1.5D terrain so that every point of the terrain is seen by at least one guard. This improves on the previous best approximation factor of 5 (see King in Proceedings of the 13th Latin American Symposium on Theoretical Informatics, pp. 629–640, 2006). Unlike most of the previous techniques, our method is based on rounding the linear programming relaxation of the corresponding covering problem. Besides the simplicity of the analysis, which mainly relies on decomposing the constraint matrix of the LP into totally balanced matrices, our algorithm, unlike previous work, generalizes to the weighted and partial versions of the basic problem.

Keywords

Terrain guarding Approximation algorithms Totally balanced matrices Geometric covering problems 

References

  1. 1.
    Ben-Moshe, B., Katz, M.J., Mitchell, J.S.B.: A constant-factor approximation algorithm for optimal 1.5D terrain guarding. SIAM J. Comput. 36(6), 1631–1647 (2007) CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Berge, C.: Balanced matrices. Math. Program. 2, 19–31 (1972) CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in finite VC-dimension. Discrete Comput. Geom. 14(4), 463–479 (1995) CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Chen, D.Z., Estivill-Castro, V., Urrutia, J.: Optimal guarding of polygons and monotone chains. In: Proceedings of the 7th Canadian Conference on Computational Geometry, pp. 133–138 (1995) Google Scholar
  5. 5.
    Clarkson, K.L., Varadarajan, K.R.: Improved approximation algorithms for geometric set cover. In: Proceedings of the 20th Symposium on Computational Geometry, pp. 135–141 (2005) Google Scholar
  6. 6.
    Demaine, E.D., O’Rourke, J.: Open problems: open problems from CCCG 2005. In: Proceedings of the 18th Canadian Conference on Computational Geometry, pp. 75–80 (2006) Google Scholar
  7. 7.
    Elbassioni, K., Matijević, D., Mestre, J., Ševerdija, D.: Improved approximations for guarding 1.5-dimensional terrains. CoRR, abs/0809.0159v1 (2008) Google Scholar
  8. 8.
    Garg, N., Könemann, J.: Faster and simpler algorithms for multicommodity flow and other fractional packing problems. In: 39th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 300–309 (1998) Google Scholar
  9. 9.
    Gaur, D.R., Ibaraki, T., Krishnamurti, R.: Constant ratio approximation algorithms for the rectangle stabbing problem and the rectilinear partitioning problem. J. Algorithms 43(1), 138–152 (2002) CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Graham, R.L.: An efficient algorithm for determining the convex hull of a finite planar set. Inf. Process. Lett. 1(4), 132–133 (1972) CrossRefMATHGoogle Scholar
  11. 11.
    Hassin, R., Segev, D.: Rounding to an integral program. Oper. Res. Lett. 36(3), 321–326 (2008) CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Hoffman, A.J., Kolen, A., Sakarovitch, M.: Totally-balanced and greedy matrices. SIAM J. Algebr. Discrete Methods 6, 721–730 (1985) CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    King, J.: A 4-approximation algorithm for guarding 1.5-dimensional terrains. In: Proceedings of the 13th Latin American Symposium on Theoretical Informatics, pp. 629–640 (2006) Google Scholar
  14. 14.
    King, J.: Errata on “A 4-approximation algorithm for guarding 1.5-dimensional terrains”. http://www.cs.mcgill.ca/~jking/papers/4apx_latin.pdf
  15. 15.
    King, J.: VC-dimension of visibility on terrains. In: Proceedings of the 20th Canadian Conference on Computational Geometry, pp. 27–30 (2008) Google Scholar
  16. 16.
    Kolen, A.: Location problems on trees and in the rectilinear plane. Ph.D. thesis, Matematisch Centrum, Amsterdam (1982) Google Scholar
  17. 17.
    Koufogiannakis, C., Young, N.E.: Beating simplex for fractional packing and covering linear programs. In: 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 494–504 (2007) Google Scholar
  18. 18.
    Koufogiannakis, C., Young, N.E.: Beating simplex for fractional packing and covering linear programs. CoRR, abs/0801.1987 (2008) Google Scholar
  19. 19.
    Krohn, E.: Survey of terrain guarding and art gallery problems. Unpublished manuscript. (November 2007) Google Scholar
  20. 20.
    Mestre, J.: Lagrangian relaxation and partial cover (extended abstract). In: Proceedings of the 25th Annual Symposium on Theoretical Aspects of Computer Science, pp. 539–550 (2008) Google Scholar
  21. 21.
    Plotkin, S.A., Shmoys, D.B., Tardos, É.: Fast approximation algorithms for fractional packing and covering problems. In: 32nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 495–504 (1991) Google Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • Khaled Elbassioni
    • 1
  • Erik Krohn
    • 2
  • Domagoj Matijević
    • 3
  • Julián Mestre
    • 1
  • Domagoj Ševerdija
    • 3
  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany
  2. 2.Department of Computer ScienceUniversity of IowaIowa CityUSA
  3. 3.Department of MathematicsJ.J. Strossmayer University of OsijekOsijekCroatia

Personalised recommendations