Advertisement

Algorithmica

, Volume 59, Issue 1, pp 35–47 | Cite as

Quantum Property Testing of Group Solvability

  • Yoshifumi Inui
  • François Le Gall
Article

Abstract

Testing efficiently whether a finite set Γ with a binary operation ⋅ over it, given as an oracle, is a group is a well-known open problem in the field of property testing. Recently, Friedl, Ivanyos and Santha have made a significant step in the direction of solving this problem by showing that it is possible to test efficiently whether the input (Γ,⋅) is an abelian group or is far, with respect to some distance, from any abelian group. In this paper, we make a step further and construct an efficient quantum algorithm that tests whether (Γ,⋅) is a solvable group, or is far from any solvable group. More precisely, the number of queries used by our algorithm is polylogarithmic in the size of the set Γ.

Keywords

Property testing Quantum algorithms Solvable groups 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arvind, V., Vinodchandran, N.V.: Solvable black-box group problems are low for PP. Theor. Comput. Sci. 180(1–2), 17–45 (1997) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Babai, L., Beals, R.: Las Vegas algorithms for matrix groups. In: Proceedings of the 34th Annual Symposium on Foundations of Computer Science, pp. 427–436 (1993) Google Scholar
  3. 3.
    Babai, L., Szemerédi, E.: On the complexity of matrix group problems. In: Proceedings of the 25th Annual IEEE Symposium on Foundations of Computer Science, pp. 229–240 (1984) Google Scholar
  4. 4.
    Babai, L., Cooperman, G., Finkelstein, L., Luks, E., Seress, Á.: Fast Monte Carlo algorithms for permutation groups. J. Comput. Syst. Sci. 50(2), 296–307 (1995) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ben-Or, M., Coppersmith, D., Luby, M., Rubinfeld, R.: Non-Abelian homomorphism testing, and distributions close to their self-convolutions. In: Proceedings of the 8th International Workshop on Randomization and Computation, pp. 273–285 (2004) Google Scholar
  6. 6.
    Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to numerical problems. In: Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, pp. 73–83 (1990) Google Scholar
  7. 7.
    Buhrman, H., Fortnow, L., Newman, I., Röhrig, H.: Quantum property testing. In: Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 873–882 (2001) Google Scholar
  8. 8.
    Ergün, F., Kannan, S., Kumar, R., Rubinfeld, R., Viswanathan, M.: Spot-checkers. J. Comput. Syst. Sci. 60(3), 717–751 (2000) CrossRefGoogle Scholar
  9. 9.
    Friedl, K., Ivanyos, G., Magniez, F., Santha, M., Sen, P.: Hidden translation and orbit coset in quantum computing. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pp. 1–9 (2003) Google Scholar
  10. 10.
    Friedl, K., Magniez, F., Santha, M., Sen, P.: Quantum testers for hidden group properties. In: Proceedings of the 28th International Symposium on Mathematical Foundations of Computer Science. Lecture Notes in Computer Science, vol. 2747, pp. 419–428. Springer, Berlin (2003) Google Scholar
  11. 11.
    Friedl, K., Ivanyos, G., Santha, M.: Efficient testing of groups. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 157–166 (2005) Google Scholar
  12. 12.
    Höfling, B.: Efficient multiplication algorithms for finite polycyclic groups. Preprint, available at http://www-public.tu-bs.de:8080/~bhoeflin/ (2004)
  13. 13.
    Inui, Y., Le Gall, F.: Efficient algorithms for the hidden subgroup problem over a class of semi-direct product groups. Quantum Inf. Comput. 7(5–6), 559–570 (2007) MATHMathSciNetGoogle Scholar
  14. 14.
    Ivanyos, G., Magniez, F., Santha, M.: Efficient quantum algorithms for some instances of the non-Abelian hidden subgroup problem. Int. J. Found. Comput. Sci. 14(5), 723–740 (2003) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Kiwi, M., Magniez, F., Santha, M.: Exact and approximate testing/correcting of algebraic functions: a survey. In: Proceedings of the 1st Summer School on Theoretical Computer Science. Lecture Notes in Computer Science, vol. 2292, pp. 30–83. Springer, Berlin (2000) Google Scholar
  16. 16.
    Magniez, F., Nayak, A.: Quantum complexity of testing group commutativity. In: Proceedings of the 32nd International Colloquium on Automata, Languages and Programming. Lecture Notes in Computer Science, vol. 3580, pp. 1312–1324. Springer, Berlin (2005) CrossRefGoogle Scholar
  17. 17.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000) MATHGoogle Scholar
  18. 18.
    Rajagopalan, S., Schulman, L.: Verification of identities. In: Proceedings of the 37th Annual IEEE Symposium on Foundations of Computer Science, pp. 612–616 (1996) Google Scholar
  19. 19.
    Ron, D.: Property testing. In: Handbook of Randomized Computing, pp. 597–649. Kluwer Academic, Dordrecht (2001) Google Scholar
  20. 20.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Shpilka, A., Wigderson, A.: Derandomizing homomorphism testing in general groups. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing, pp. 427–435 (2004) Google Scholar
  22. 22.
    Sims, C.: Computation with Finitely Presented Groups. Cambridge University Press, Cambridge (1994) MATHCrossRefGoogle Scholar
  23. 23.
    Watrous, J.: Quantum algorithms for solvable groups. In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, pp. 60–67 (2001) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Computer ScienceThe University of TokyoTokyoJapan
  2. 2.ERATO-SORST Quantum Computation and Information ProjectJapan Science and Technology AgencyTokyoJapan

Personalised recommendations