Advertisement

Algorithmica

, Volume 60, Issue 2, pp 250–273 | Cite as

Out-of-Order Event Processing in Kinetic Data Structures

  • Mohammad Ali Abam
  • Pankaj K. Agarwal
  • Mark de Berg
  • Hai YuEmail author
Article
  • 100 Downloads

Abstract

We study the problem of designing kinetic data structures (KDS’s for short) when event times cannot be computed exactly and events may be processed in a wrong order. In traditional KDS’s this can lead to major inconsistencies from which the KDS cannot recover. We present more robust KDS’s for the maintenance of several fundamental structures such as kinetic sorting and kinetic tournament trees, which overcome the difficulty by employing a refined event scheduling and processing technique. We prove that the new event scheduling mechanism leads to a KDS that is correct except for finitely many short time intervals. We analyze the maximum delay of events and the maximum error in the structure, and we experimentally compare our approach to the standard event scheduling mechanism.

Kinetic data structures Robust computation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, P.K., Guibas, L.J., Hershberger, J., Veach, E.: Maintaining the extent of a moving point set. Discrete Comput. Geom. 26, 353–374 (2001) zbMATHMathSciNetGoogle Scholar
  2. 2.
    Agarwal, P.K., Gao, J., Guibas, L.J.: Kinetic medians and kd-trees. In: Proc. 10th European Sympos. Algorithms, pp. 5–16 (2002) Google Scholar
  3. 3.
    Agarwal, P.K., Arge, L., Erickson, J.: Indexing moving points. J. Comput. Syst. Sci. 66, 207–243 (2003) CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Approximating extent measures of points. J. ACM 51, 606–635 (2004) CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Alexandron, G., Kaplan, H., Sharir, M.: Kinetic and dynamic data structures for convex hulls and upper envelopes. Comput. Geom. Theory Appl. 36, 144–158 (2006) MathSciNetGoogle Scholar
  6. 6.
    Basch, J., Guibas, L.J., Zhang, L.: Proximity problems on moving points. In: Proc. 13th Annu. Sympos. Comput. Geom., pp. 344–351 (1997) Google Scholar
  7. 7.
    Basch, J., Guibas, L.J., Hershberger, J.: Data structures for mobile data. J. Algorithms 31, 1–28 (1999) CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    The CGAL Library, http://www.cgal.org/
  9. 9.
    Collins, G., Akritas, A.: Polynomial real root isolation using Descarte’s rule of signs. In: Proc. 3rd ACM Sympos. Symbol. Algebra Comput., pp. 272–275 (1976) Google Scholar
  10. 10.
    The Core Library, http://www.cs.nyu.edu/exact/
  11. 11.
    Fortune, S.: Progress in computational geometry. In: Martin, R. (ed.) Directions in Geometric Computing, pp. 81–128. Information Geometers Ltd., Winchester (1993) Google Scholar
  12. 12.
    Funke, S., Klein, C., Mehlhorn, K., Schmitt, S.: Controlled perturbation for Delaunay triangulations. In: Proc. 16th ACM-SIAM Sympos. Discrete Algorithms, pp. 1047–1056 (2005) Google Scholar
  13. 13.
    Guibas, L.J.: Algorithms for tracking moving objects. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, 2nd edn., pp. 1117–1134. CRC Press, Boca Raton (2004) Google Scholar
  14. 14.
    Guibas, L.J., Karavelas, M.: Interval methods for kinetic simulation. In: Proc. 15th Annu. ACM Sympos. Comput. Geom., pp. 255–264 (1999) Google Scholar
  15. 15.
    Guibas, L.J., Russel, D.: An empirical comparison of techniques for updating Delaunay triangulations. In: Proc. 20th Annu. Sympos. Comput. Geom., pp. 170–179 (2004) Google Scholar
  16. 16.
    Guibas, L.J., Karavelas, M., Russel, D.: A computational framework for handling motion. In: Proc. 6th Workshop on Algorithm Engineering and Experiments, pp. 129–141 (2004) Google Scholar
  17. 17.
    Halperin, D., Shelton, C.: A perturbation scheme for spherical arrangements with application to molecular modeling. Comput. Geom. Theory Appl. 10, 273–287 (1998) zbMATHMathSciNetGoogle Scholar
  18. 18.
    Jacobson, N.: Basic Algebra I, 2nd edn. Freeman, New York (1985) zbMATHGoogle Scholar
  19. 19.
    Mehlhorn, K., Osbild, R., Sagraloff, M.: Reliable and efficient computational geometry via controlled perturbation. In: Proc. 33rd Internat. Colloq. Automat. Langu. Program., pp. 299–310 (2006) Google Scholar
  20. 20.
    Milenkovic, V., Sacks, E.: An approximate arrangement algorithm for semi-algebraic curves. Int. J. Comput. Geom. Appl. 17, 175–198 (2007) CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Schirra, S.: Robustness and precision issues in geometric computation. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 597–632. Elsevier, Amsterdam (2000) CrossRefGoogle Scholar
  22. 22.
    Yap, C.: Robust geometric computation. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, 2nd edn., pp. 927–952. CRC Press, Boca Raton (2004) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Mohammad Ali Abam
    • 1
  • Pankaj K. Agarwal
    • 3
  • Mark de Berg
    • 2
  • Hai Yu
    • 3
    Email author
  1. 1.MADALGO CenterAarhus UniversityAarhusDenmark
  2. 2.Department of Computer ScienceTU EindhovenEindhovenThe Netherlands
  3. 3.Department of Computer ScienceDuke UniversityDurhamUSA

Personalised recommendations