Algorithmica

, Volume 60, Issue 3, pp 627–652 | Cite as

Minimum Weight Convex Steiner Partitions

Article

Abstract

New tight bounds are presented on the minimum length of planar straight line graphs connecting n given points in the plane and having convex faces. Specifically, we show that the minimum length of a convex Steiner partition for n points in the plane is at most O(log n/log log n) times longer than a Euclidean minimum spanning tree (EMST), and this bound is the best possible. Without Steiner points, the corresponding bound is known to be Θ(log n), attained for n vertices of a pseudo-triangle. We also show that the minimum length convex Steiner partition of n points along a pseudo-triangle is at most O(log log n) times longer than an EMST, and this bound is also the best possible. Our methods are constructive and lead to O(nlog n) time algorithms for computing convex Steiner partitions having O(n) Steiner points and weight within the above worst-case bounds in both cases.

Keywords

Convex partition Network design Stretch factor Steiner points 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bern, M.W., Eppstein, D., Gilbert, J.R.: Provably good mesh generation. J. Comput. Syst. Sci. 48(3), 384–409 (1994) CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Bose, P., Morin, P.: Competitive online routing in geometric graphs. Theor. Comput. Sci. 324(2–3), 273–288 (2004) CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bose, P., Morin, P.: Online routing in triangulations. SIAM J. Comput. 33(4), 937–951 (2004) CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with guaranteed delivery in ad hoc wireless networks. Wirel. Netw. 7, 609–616 (2001) CrossRefMATHGoogle Scholar
  5. 5.
    Bose, P., Brodnik, A., Carlsson, S., Demaine, E.D., Fleischer, R., Lopez-Ortiz, A., Morin, P., Munro, I.: Online routing in convex subdivisions. Intern. J. Comput. Geom. & Appl. 12(4), 283–295 (2002) CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Bose, P., Gudmundsson, J., Smid, M.: Constructing plane spanners of bounded degree and low weight. Algorithmica 42, 249–264 (2005) CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Chazelle, B., Dobkin, D.P.: Decomposing a polygon into its convex parts. In: Proc. of the 11th Sympos. on Theory of Computing, pp. 38–48. ACM, New York (1979) Google Scholar
  8. 8.
    Chazelle, B., Edelsbrunner, H., Grigni, M., Guibas, L.J., Hershberger, J., Sharir, M., Snoeyink, J.: Ray shooting in polygons using geodesic triangulations. Algorithmica 12, 54–68 (1994) CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Clarkson, K.L.: Approximation algorithms for planar traveling salesman tours and minimum-length triangulations. In: Proc. of the 2nd Sympos. on Discrete Algorithms, pp. 17–23. ACM, New York (1991) Google Scholar
  10. 10.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Berlin (2008) MATHGoogle Scholar
  11. 11.
    de Wet, P.O.: Geometric Steiner minimal trees. Ph.D. thesis, University of South Africa (2008). http://etd.unisa.ac.za/ETD-db/theses/available/etd-08052008-130058/unrestricted/thesis.pdf
  12. 12.
    Du, D.-Z., Hwang, F.K.: A proof of Gilbert-Pollak’s conjecture on the Steiner ratio. Algorithmica 7, 121–135 (1992) CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Dumitrescu, A., Tóth, C.D.: Light orthogonal networks with constant geometric dilation. J. Discrete Algorithms 7, 112–129 (2009) CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Ebbers-Baumann, A., Grüne, A., Klein, R.: On the geometric dilation of finite point sets. Algorithmica 44, 137–149 (2006) CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Eppstein, D.: Approximating the minimum weight Steiner triangulation. Discrete Comput. Geom. 11, 163–191 (1994) CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Eppstein, D.: Spanning trees and spanners. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 425–461. Elsevier, Amsterdam (2000) CrossRefGoogle Scholar
  17. 17.
    Gao, J., Guibas, L.J., Hershberger, J., Zhang, L., Zhu, A.: Geometric spanners for routing in mobile networks. IEEE J. Sel. Areas Commun. 23(1), 174–185 (2005) CrossRefGoogle Scholar
  18. 18.
    García-López, J., Nicolás, C.M.: Planar point sets with large minimum convex partitions. In: Proc. of European Workshop on Comput. Geom., pp. 51–54, Delphi (2006). Google Scholar
  19. 19.
    Gilbert, P.D.: New results in planar triangulations. Report R-850, Coordinated Science Laboratory, University of Illinois, Urbana, Illinois (1979) Google Scholar
  20. 20.
    Gilbert, E.N., Pollak, H.O.: Steiner minimal trees. SIAM J. Appl. Math. 16(1), 1–29 (1968) CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Gudmundsson, J., Levcopoulos, C.: Minimum weight pseudo-triangulations. Comput. Geom. Theory Appl. 38(3), 139–153 (2007) MATHMathSciNetGoogle Scholar
  22. 22.
    Keil, J.M., Gutwin, C.A.: Classes of graphs that approximate the complete Euclidean graph. Discrete Comput. Geom. 7, 13–28 (1992) CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Keil, J.M., Snoeyink, J.: On the time bound for convex decomposition of simple polygons. Int. J. Comput. Geom. Appl. 12, 181–192 (2002) CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Kim, Y.-J., Govindan, R., Karp, B., Shenker, S.: Geographic routing made practical. In: Proc. of the 2nd Sympos. on Networked Systems Design and Implementation, pp. 217–230, USENIX Assoc. (2005) Google Scholar
  25. 25.
    Kirkpatrick, D.G.: A note on Delaunay and optimal triangulations. Inf. Proc. Lett. 10(3), 127–128 (1980) CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Klincsek, G.T.: Minimal triangulations of polygonal domains. In: Submodular Functions and Optimization. Annals of Discrete Math., vol. 9, pp. 121–123. Elsevier, Amsterdam (1980) Google Scholar
  27. 27.
    Knauer, C., Spillner, A.: Approximation algorithms for the minimum convex partition problem. In: Proc. of the 10th Scandinavian Workshop on Algorithm Theory. LNCS, vol. 4059, pp. 232–241. Springer, Berlin (2006) Google Scholar
  28. 28.
    Kranakis, E., Singh, H., Urrutia, J.: Compass routing on geometric networks. In: Proc. of the 11th Canadian Conf. on Comput. Geom., pp. 51–54, Vancouver, BC (1999) Google Scholar
  29. 29.
    Leighton, T., Moitra, A.: Some results on greedy embeddings in metric spaces. In: Proc. of the 49th Sympos. on Foundations of Comput. Sci., pp. 337–346. IEEE, New York (2008) Google Scholar
  30. 30.
    Levcopoulos, C., Krznaric, D.: Quasi-greedy triangulations approximating the minimum weight triangulation. J. Algorithms 27(2), 303–338 (1998) CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Levcopoulos, C., Lingas, A.: Bounds on the length of convex partitions of polygons. In: Foundations of Software Technology and Theoretical Computer Science. LNCS, vol. 181, pp. 279–295. Springer, Berlin (1984) Google Scholar
  32. 32.
    Levcopoulos, C., Lingas, A.: There are planar graphs almost as good as the complete graphs and almost as cheap as minimum spanning trees. Algorithmica 8, 251–256 (1992) CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Lingas, A.: The power of non-rectilinear holes. In: Proc. of the 9th Internat. Colloq. on Automata, Languages and Programming. LNCS, vol. 140, pp. 369–383. Springer, Berlin (1982) CrossRefGoogle Scholar
  34. 34.
    Mehlhorn, K., Näher, S.: LEDA: A Platform for Combinatorial and Geometric Computing. Cambridge University Press, Cambridge (1999) MATHGoogle Scholar
  35. 35.
    Mulzer, W., Rote, G.: Minimum weight triangulation is NP-hard. J. ACM 55(2) (2008), article 11 Google Scholar
  36. 36.
    Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press, Cambridge (2007) CrossRefMATHGoogle Scholar
  37. 37.
    Neumann-Lara, V., Rivera-Campo, E., Urrutia, J.: A note on convex decompositions of a set of points in the plane. Graphs Comb. 20(2), 223–231 (2004) CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Papadimitriou, C.H., Ratajczak, D.: On a conjecture related to geometric routing. Theor. Comput. Sci. 344, 3–14 (2005) CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Plaisted, D.A., Hong, J.: A heuristic triangulation algorithm. J. Algorithms 8(3), 405–437 (1987) CrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    Rao, A., Papadimitriou, C.H., Shenker, S., Stoica, I.: Geographic routing without location information. In: Proc. of the 9th Conf. on Mobile Computing and Networking, pp. 96–108. ACM, New York (2003) Google Scholar
  41. 41.
    Remy, J., Steger, A.: A quasi-polynomial time approximation scheme for minimum weight triangulation. In: Proc. of the 38th Sympos. on Theory of Computing, pp. 316–325. ACM, New York (2006) (to appear in J. ACM) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of Wisconsin-MilwaukeeMilwaukeeUSA
  2. 2.Department of MathematicsUniversity of CalgaryCalgaryCanada

Personalised recommendations