, Volume 59, Issue 1, pp 16–34 | Cite as

On Dissemination Thresholds in Regular and Irregular Graph Classes

  • I. Rapaport
  • K. Suchan
  • I. Todinca
  • J. Verstraete
Open Access


We investigate the natural situation of the dissemination of information on various graph classes starting with a random set of informed vertices called active. Initially active vertices are chosen independently with probability p, and at any stage in the process, a vertex becomes active if the majority of its neighbours are active, and thereafter never changes its state. This process is a particular case of bootstrap percolation. We show that in any cubic graph, with high probability, the information will not spread to all vertices in the graph if \(p<\frac{1}{2}\) . We give families of graphs in which information spreads to all vertices with high probability for relatively small values of p.


Bootstrap percolation Cubic graphs Information dissemination 


  1. 1.
    Aizenman, A., Lebowitz, J.: Metastability effects in bootstrap percolation. J. Phys. A Math. Gen. 21, 3801–3813 (1988) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alon, N., Spencer, J.: The Probabilistic Method. Wiley, New York (1992). 2nd edn. (2000) zbMATHGoogle Scholar
  3. 3.
    Bollobás, B.: Random Graphs. Academic Press, San Diego (1985). 2nd edn. Cambridge University Press, Cambridge (2001) zbMATHGoogle Scholar
  4. 4.
    Bollobás, B., Szemerédi, E.: Girth of sparse graphs. J. Graph Theory 39(3), 194–200 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Balogh, J., Pittel, B.: Bootstrap percolation on the random regular graph. Random Struct. Algorithms 30(1–2), 257–286 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Balogh, J., Bollobás, B., Morris, J.: Majority bootstrap percolation on the hypercube. Manuscript (2007) Google Scholar
  7. 7.
    Carvajal, B., Matamala, M., Rapaport, I., Schabanel, N.: Small alliances in graphs. In: Proceedings of MFCS 2007. LNCS, vol. 4708, pp. 218–227. Springer, Berlin (2007) Google Scholar
  8. 8.
    Cerf, R., Manzo, F.: The threshold regime of finite volume bootstrap percolation. Stoch. Process. Their Appl. 101, 69–82 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Flake, G.W., Lawrence, S., Giles, C.L.: Efficient identification of web communities. In: Proceedings of KKD 2000, pp. 150–160 (2000) Google Scholar
  10. 10.
    Garmo, H.: The asymptotic distribution of long cycles in random regular graphs. Random Struct. Algorithms 15(1), 43–92 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Habib, M., McDiarmid, C., Ramirez-Alfonsin, J., Reed, B. (eds.): Probabilistic Methods for Algorithmic Discrete Mathematics. Algorithms and Combinatorics, vol. 16. Springer, Berlin (1998) zbMATHGoogle Scholar
  12. 12.
    Haynes, T.W., Hedetniemi, S.T., Henning, M.A.: Global defensive alliances in graphs. Electron. J. Comb. 10, 139–146 (2003) MathSciNetGoogle Scholar
  13. 13.
    Hayrapetyan, A., Kempe, D., Pál, M., Svitkina, Z.: Unbalanced graph cuts. In: Proceedings of ESA 2005. LNCS, vol. 3669, pp. 191–202. Springer, Berlin (2005) Google Scholar
  14. 14.
    Holroyd, A.: Sharp metastability threshold for two-dimensional bootstrap percolation. Probab. Theory Relat. Fields 125(2), 195–224 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Janson, S., Łuczak, T., Rucinski, A.: Random Graphs. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New York (2000) zbMATHGoogle Scholar
  16. 16.
    Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedings of KDD 2003, pp. 137–146 (2003) Google Scholar
  17. 17.
    Lubotsky, A., Phillips, R., Sarnak, R.: Ramanujan graphs. Combinatorica 8, 261–278 (1988) CrossRefMathSciNetGoogle Scholar
  18. 18.
    Peleg, D.: Local majorities, coalitions and monopolies in graphs: a review. Theoret. Comput. Sci. 282, 231–257 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Wormald, N.: The asymptotic distribution of short cycles in random regular graphs. J. Comb. Theory, Ser. B 31, 168–182 (1981) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Wormald, N.: Models of random regular graphs. In: Lamb, J.D., Preece, D.A. (eds.) Surveys in Combinatorics. London Mathematical Society Lecture Note Series, vol. 276, pp. 239–298. Cambridge University Press, Cambridge (1999) Google Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • I. Rapaport
    • 1
  • K. Suchan
    • 2
    • 3
  • I. Todinca
    • 4
  • J. Verstraete
    • 5
  1. 1.Departamento de Ingeniería Matemática and Centro de Modelamiento MatemáticoUniversidad de ChileSantiagoChile
  2. 2.Facultad de Ingeniería y CienciasUniversidad Adolfo IbañezSantiagoChile
  3. 3.Faculty of Applied MathematicsAGH–University of Science and TechnologyCracowPoland
  4. 4.LIFOUniversité d’OrléansOrléansFrance
  5. 5.University of CaliforniaSan DiegoUSA

Personalised recommendations