Advertisement

Algorithmica

, Volume 59, Issue 2, pp 215–239 | Cite as

Linear-Time Recognition of Helly Circular-Arc Models and Graphs

  • Benson L. Joeris
  • Min Chih LinEmail author
  • Ross M. McConnell
  • Jeremy P. Spinrad
  • Jayme L. Szwarcfiter
Article

Abstract

A circular-arc model ℳ is a circle C together with a collection \(\mathcal{A}\) of arcs of C. If \(\mathcal{A}\) satisfies the Helly Property then ℳ is a Helly circular-arc model. A (Helly) circular-arc graph is the intersection graph of a (Helly) circular-arc model. Circular-arc graphs and their subclasses have been the object of a great deal of attention in the literature. Linear-time recognition algorithms have been described both for the general class and for some of its subclasses. However, for Helly circular-arc graphs, the best recognition algorithm is that by Gavril, whose complexity is O(n 3). In this article, we describe different characterizations for Helly circular-arc graphs, including a characterization by forbidden induced subgraphs for the class. The characterizations lead to a linear-time recognition algorithm for recognizing graphs of this class. The algorithm also produces certificates for a negative answer, by exhibiting a forbidden subgraph of it, within this same bound.

Keywords

Algorithms Circular-arc graphs Forbidden subgraphs Helly circular-arc graphs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benzer, S.: On the topology of the genetic fine structure. Proc. Natl. Acad. Sci. USA 45, 1607–1620 (1959) CrossRefGoogle Scholar
  2. 2.
    Booth, S., Lueker, S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13, 335–379 (1976) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Deng, X., Hell, P., Huang, J.: Linear time representation algorithms for proper circular-arc graphs and proper interval graphs. SIAM J. Comput. 25, 390–403 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint set union. J. Comput. Syst. Sci. 30, 209–221 (1985) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gavril, F.: Algorithms on circular-arc graphs. Networks 4, 357–369 (1974) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd edn. Academic Press, New York (2004) zbMATHGoogle Scholar
  7. 7.
    Habib, M., McConnell, R., Paul, C., Viennot, L.: Lex-bfs and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing. Theor. Comput. Sci. 234, 59–84 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Itai, A.: Linear time restricted union/find. Manuscript (2006) Google Scholar
  9. 9.
    Kaplan, H., Nussbaum, Y.: A simpler linear-time recognition of circular-arc graphs. In: The Tenth Scandinavian Workshop on Algorithm Theory (SWAT’06). Lecture Notes in Computer Science, vol. 4059, pp. 289–300. Springer, Berlin (2006) Google Scholar
  10. 10.
    Kaplan, H., Nussbaum, Y.: Certifying algorithms for recognizing proper circular-arc graphs and unit circular-arc graphs. In: Proceedings of the 32nd Workshop on Graph Theoretic Concepts in Computer Science (WG’06). Lecture Notes in Computer Science, vol. 4271, pp. 289–300. Springer, Berlin (2006) CrossRefGoogle Scholar
  11. 11.
    Kleinberg, J., Tardos, E.: Algorithm Design. Addison-Wesley, Boston (2006) Google Scholar
  12. 12.
    Lekkerker, C.G., Boland, J.C.: Representation of finite graphs by a set of intervals on the real line. Fund. Math. 51, 45–64 (1962) MathSciNetGoogle Scholar
  13. 13.
    Lin, M.C., Szwarcfiter, J.L.: Characterizations and linear time recognition of Helly circular-arc graphs. In: Proceedings of the 12th Annual International Conference on Computing and Combinatorics (COCOON’06). Lecture Notes in Computer Science, vol. 4112, pp. 73–82. Springer, Berlin (2006) Google Scholar
  14. 14.
    Lin, M.C., Szwarcfiter, J.L.: Efficient construction of unit circular-arc models. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’06), pp. 309–315 (2006) Google Scholar
  15. 15.
    Lin, M.C., Szwarcfiter, J.L.: Unit circular-arc graph representations and feasible circulations. SIAM J. Discrete Math. 22, 409–423 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    McConnell, R.M.: Linear-time recognition of circular-arc graphs. In: Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science (FOCS’01), pp. 386–394 (2001) Google Scholar
  17. 17.
    McConnell, R.M.: Linear-time recognition of circular-arc graphs. Algorithmica 37(2), 93–147 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Roberts, F.S.: Graph Theory and its Applications to Problems of Society. Society for Industrial and Applied Mathematics, Philadelphia (1978) Google Scholar
  19. 19.
    Spinrad, J.: Efficient Graph Representations. Am. Math. Soc., Providence (2003) zbMATHGoogle Scholar
  20. 20.
    Tucker, A.: Characterizing circular-arc graphs. Bull. Am. Math. Soc. 76, 1257–1260 (1970) zbMATHCrossRefGoogle Scholar
  21. 21.
    Tucker, A.: An efficient test for circular-arc graphs. SIAM J. Comput. 9, 1–24 (1980) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Benson L. Joeris
    • 1
  • Min Chih Lin
    • 2
    Email author
  • Ross M. McConnell
    • 1
  • Jeremy P. Spinrad
    • 3
  • Jayme L. Szwarcfiter
    • 4
  1. 1.Computer Science DepartmentColorado State UniversityFort CollinsUSA
  2. 2.Facultad de Ciencias Exactas y Naturales, Departamento de ComputaciónUniversidad de Buenos AiresBuenos AiresArgentina
  3. 3.Computer Science DepartmentVanderbilt UniversityNashvilleUSA
  4. 4.Instituto de Matemática, NCE and COPPEUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations