Algorithmica

, Volume 56, Issue 3, pp 333–341 | Cite as

A Better Constant-Factor Approximation for Selected-Internal Steiner Minimum Tree

  • Xianyue Li
  • Feng Zou
  • Yaochun Huang
  • Donghyun Kim
  • Weili Wu
Article

Abstract

The selected-internal Steiner minimum tree problem is a generalization of original Steiner minimum tree problem. Given a weighted complete graph G=(V,E) with weight function c, and two subsets RRV with |RR|≥2, selected-internal Steiner minimum tree problem is to find a minimum subtree T of G interconnecting R such that any leaf of T does not belong to R. In this paper, suppose c is metric, we obtain a (1+ρ)-approximation algorithm for this problem, where ρ is the best-known approximation ratio for the Steiner minimum tree problem.

Keywords

Selected-internal Steiner tree Approximation algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borchers, A., Du, D.Z.: The k-Steiner ratio in graphs. SIAM J. Comput. 26, 857–869 (1997) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cheng, X., Du, D.Z.: Steiner Trees in Industry. Kluwer Academic, Dordrecht (2001) Google Scholar
  3. 3.
    Drake, D.E., Hougardy, S.: On approximation algorithms for the terminal Steiner tree problem. Inf. Process. Lett. 89, 15–18 (2004) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Du, D.Z.: On component-size bounded Steiner trees. Discrete Appl. Math. 60, 131–140 (1995) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Du, D.Z., Smith, J.M., Rubinstein, J.H.: Advance in Steiner Tree. Kluwer Academic, Dordrecht (2000) Google Scholar
  6. 6.
    Foulds, L., Graham, R.: The Steiner problem in phylogeny is NP-complete. Adv. Appl. Math. 3, 43–49 (1982) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Fuchs, B.: A note on the terminal Steiner tree problem. Inf. Process. Lett. 87, 219–220 (2003) MATHCrossRefGoogle Scholar
  8. 8.
    Garey, M., Johnson, D.: The rectilinear Steiner problem is NP-complete. SIAM J. Appl. Math. 32, 826–834 (1977) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Garey, M., Graham, R., Johnson, D.: The complexity of computing Steriner minimal tree. SIAM J. Appl. Math. 32, 835–859 (1997) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Graur, D., Li, W.H.: Fundamentals of Molecular Evolution, 2nd edn. Sinauer, Sunderland (2000) Google Scholar
  11. 11.
    Hsieh, S.Y., Gao, H.M.: On the partial-terminal Steiner tree problem. J. Supercomput. 41, 41–52 (2007) CrossRefGoogle Scholar
  12. 12.
    Hsieh, S.Y., Yang, S.C.: Approximating the selected-internal Steiner tree. Theor. Comput. Sci. 381, 288–291 (2007) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. North-Holland, Amsterdam (1992) MATHGoogle Scholar
  14. 14.
    Kahng, A.B., Robins, G.: On optimal Interconnections for VLSI. Kluwer Academic, Dordrecht (1995) MATHGoogle Scholar
  15. 15.
    Korte, B., Prömel, H.J., Steger, A.: Steiner Trees in VLSI-Layouts. In: Korte, B., (eds.) Paths, Flows and VLSI-Layout. Springer, New York (1990) Google Scholar
  16. 16.
    Lin, G., Xue, G.: On the terminal Steiner tree problem. Inf. Process. Lett. 84, 103–107 (2002) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Lu, C.L., Tang, C.Y., Lee, R.C.T.: The full Steiner tree problem. Theor. Comput. Sci. 306, 55–67 (2003) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Martineza, F.V., Pinab, J.C.D., Soares, J.: Algorithm for terminal Steiner trees. Theor. Comput. Sci. 389, 133–142 (2007) CrossRefGoogle Scholar
  19. 19.
    Robins, G., Zelikovsky, A.: Improved Steiner tree approximation in graphs. In: Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pp. 770–779 (2000) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Xianyue Li
    • 1
  • Feng Zou
    • 2
  • Yaochun Huang
    • 2
  • Donghyun Kim
    • 2
  • Weili Wu
    • 2
  1. 1.School of Mathematics and StatisticsLanzhou UniversityLanzhouP.R. China
  2. 2.Department of Computer ScienceUniversity of Texas at DallasRichardsonUSA

Personalised recommendations