Algorithmica

, Volume 57, Issue 3, pp 462–483 | Cite as

Confluently Persistent Tries for Efficient Version Control

Article

Abstract

We consider a data-structural problem motivated by version control of a hierarchical directory structure in a system like Subversion. The model is that directories and files can be moved and copied between two arbitrary versions in addition to being added or removed in an arbitrary version. Equivalently, we wish to maintain a confluently persistent trie (where internal nodes represent directories, leaves represent files, and edge labels represent path names), subject to copying a subtree between two arbitrary versions, adding a new child to an existing node, and deleting an existing subtree in an arbitrary version.

Our first data structure represents an n-node degree-Δ trie with O(1) “fingers” in each version while supporting finger movement (navigation) and modifications near the fingers (including subtree copy) in O(lg Δ) time and space per operation. This data structure is essentially a locality-sensitive version of the standard practice—path copying—costing O(dlg Δ) time and space for modification of a node at depth d, which is expensive when performing many deep but nearby updates. Our second data structure supporting finger movement in O(lg Δ) time and no space, while modifications take O(lg n) time and space. This data structure is substantially faster for deep updates, i.e., unbalanced tries. Both of these data structures are functional, which is a stronger property than confluent persistence. Without this stronger property, we show how both data structures can be sped up to support movement in O(lg lg Δ), which is essentially optimal. Along the way, we present a general technique for global rebuilding of fully persistent data structures, which is nontrivial because amortization and persistence do not usually mix. In particular, this technique improves the best previous result for fully persistent arrays and obtains the first efficient fully persistent hash table.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bent, S.W., Sleator, D.D., Tarjan, R.E.: Biased search trees. SIAM J. Comput. 14(3), 545–568 (1985) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Blelloch, G.E., Maggs, B.M., Woo, S.L.M.: Space-efficient finger search on degree-balanced search trees. In: Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 373–383, Baltimore, Maryland, January 2003 Google Scholar
  3. 3.
    Carter, J.L., Wegman, M.N.: Universal classes of hash functions (extended abstract). In: Proc. 9th Annual ACM Symposium on Theory of Computing, pp. 106–112 (1977) Google Scholar
  4. 4.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001) MATHGoogle Scholar
  5. 5.
    Dietz, P.F.: Fully persistent arrays (extended abstract). In: Proc. Workshop on Algorithms and Data Structures. Lecture Notes in Computer Science, vol. 382, pp. 67–74. Springer, Berlin (1989) Google Scholar
  6. 6.
    Douceur, J.R., Bolosky, W.J.: A large-scale study of file-system contents. SIGMETRICS Perform. Eval. Rev. 27(1), 59–70 (1999) CrossRefGoogle Scholar
  7. 7.
    Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures persistent. J. Comput. Syst. Sci. 38(1), 86–124 (1989). Originally appeared in STOC’86 MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Driscoll, J.R., Sleator, D.D.K., Tarjan, R.E.: Fully persistent lists with catenation. J. ACM 41(5), 943–959 (1994) Google Scholar
  9. 9.
    Fiat, A., Kaplan, H.: Making data structures confluently persistent. J. Algorithms 48(1), 16–58 (2003) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    HaskellWiki: Zipper. http://www.haskell.org/haskellwiki/Zipper (2008)
  11. 11.
    Iacono, J.: Alternatives to splay trees with o(log n) worst-case access times. In: Proc. 12th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 516–522 (2001) Google Scholar
  12. 12.
    Kaplan, H., Tarjan, R.E.: Persistent lists with catenation via recursive slow-down. In: Proc. 27th Annual ACM Symposium on Theory of Computing, pp. 93–102 (1995) Google Scholar
  13. 13.
    Krijnen, T.J.G., Meertens, L.: Making B-trees work for B. Mathematical Centre Report IW 219, Mathematisch Centrum, Amsterdam, The Netherlands (1983) Google Scholar
  14. 14.
    Mitzenmacher, M.: Dynamic models for file sizes and double Pareto distributions. Internet Math. 1(3), 305–333 (2003) MathSciNetGoogle Scholar
  15. 15.
    Myers, E.W.: AVL dags. Technical Report 82-9, Department of Computer Science, University of Arizona, Tucson. Arizona (1982) Google Scholar
  16. 16.
    Myers, E.W.: Efficient applicative data types. In: Proceedings of the 11th Annual ACM Symposium on Principles of Programming Languages, pp. 66–75, Salt Lake City, Utah, January 1984 Google Scholar
  17. 17.
    Okasaki, C.: Purely Functional Data Structures. Cambridge University Press, Cambridge (1998) CrossRefGoogle Scholar
  18. 18.
    Pǎtraşcu, M., Thorup, M.: Randomization does not help searching predecessors. In: Proc. 18th ACM-SIAM Symposium on Discrete Algorithms, pp. 555–564 (2007) Google Scholar
  19. 19.
    Pippenger, N.: Pure versus impure lisp. ACM Trans. Program. Lang. Syst. 19(2), 223–238 (1997) CrossRefMathSciNetGoogle Scholar
  20. 20.
    Ports, D.R.K., Clements, A.T., Demaine, E.D.: PersiFS: A versioned file system with an efficient representation. In: Proc. 20th ACM Symposium on Operating Systems Principles, October 2005 Google Scholar
  21. 21.
    Reps, T., Teitelbaum, T., Demers, A.: Incremental context-dependent analysis for language-based editors. ACM Trans. Program. Lang. Syst. 5(3), 449–477 (1983) CrossRefGoogle Scholar
  22. 22.
    Sarnak, N., Tarjan, R.E.: Planar point location using persistent search trees. Commun. ACM 29(7), 669–677 (1986) CrossRefMathSciNetGoogle Scholar
  23. 23.
    Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst. Sci. 26(3), 362–391 (1983) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Swart, G.: Efficient algorithms for computing geometric intersections. Technical Report 85-01-02, Department of Computer Science, University of Washington, Seattle, Washington (1985) Google Scholar

Copyright information

© authors 2009

Authors and Affiliations

  • Erik D. Demaine
    • 1
  • Stefan Langerman
    • 2
  • Eric Price
    • 1
  1. 1.MIT Computer Science and Artificial Intelligence LaboratoryCambridgeUSA
  2. 2.Computer Science DepartmentUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations