Algorithmica

, Volume 58, Issue 2, pp 352–390 | Cite as

Guarding a Terrain by Two Watchtowers

  • Pankaj K. Agarwal
  • Sergey Bereg
  • Ovidiu Daescu
  • Haim Kaplan
  • Simeon Ntafos
  • Micha Sharir
  • Binhai Zhu
Article
  • 101 Downloads

Abstract

Given a polyhedral terrain T with n vertices, the two-watchtower problem for T asks to find two vertical segments, called watchtowers, of smallest common height, whose bottom endpoints (bases) lie on T, and whose top endpoints guard T, in the sense that each point on T is visible from at least one of them. There are three versions of the problem, discrete, semi-continuous, and continuous, depending on whether two, one, or none of the two bases are restricted to be among the vertices of T, respectively.

In this paper we present the following results for the two-watchtower problem in ℝ2 and ℝ3: (1) We show that the discrete two-watchtowers problem in ℝ2 can be solved in O(n2log 4n) time, significantly improving previous solutions. The algorithm works, without increasing its asymptotic running time, for the semi-continuous version, where one of the towers is allowed to be placed anywhere on T. (2) We show that the continuous two-watchtower problem in ℝ2 can be solved in O(n3α(n)log 3n) time, again significantly improving previous results. (3) Still in ℝ2, we show that the continuous version of the problem of guarding a finite set PT of m points by two watchtowers of smallest common height can be solved in O(mnlog 4n) time. (4) We show that the discrete version of the two-watchtower problem in ℝ3 can be solved in O(n11/3polylog(n)) time; this is the first nontrivial result for this problem in ℝ3.

Keywords

Computational geometry Visibility algorithms Terrain guarding Parametric search 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggarwal, A., Chazelle, B., Guibas, L., Ó’Dúnlaing, C., Yap, C.: Parallel computational geometry. Algorithmica 3, 293–328 (1988) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Ben-Moshe, B., Carmi, P., Katz, M.J.: Computing all large sums-of-pairs in ℝn and the discrete planar two-watchtower problem. Inf. Process. Lett. 89, 137–139 (2004) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ben-Moshe, B., Katz, M.J., Mitchell, J.S.B.: A constant-factor approximation algorithm for optimal terrain guarding. SIAM J. Comput. 36, 1631–1647 (2007) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bespamyatnikh, S., Chen, Z., Wang, K., Zhu, B.: On the planar two-watchtower problem. In: Proc. 7th Annu. Internat. Conf. Computing and Combinatorics, pp. 121–130 (2001) Google Scholar
  5. 5.
    Chazelle, B., Guibas, L.: Visibility and intersection problems in plane geometry. Discrete Comput. Geom. 4, 551–581 (1989) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Chen, D.Z., Daescu, O.: Maintaining visibility of a polygon with a moving point of view. Inf. Process. Lett. 65, 269–275 (1998) CrossRefMathSciNetGoogle Scholar
  7. 7.
    Clarkson, K., Varadarajan, K.: Improved approximation algorithms for geometric set cover. Discrete Comput. Geom. 37, 43–58 (2007) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Cole, R.: Slowing down sorting networks to obtain faster sorting algorithms. J. ACM 34, 200–208 (1987) CrossRefMathSciNetGoogle Scholar
  9. 9.
    Cole, R., Sharir, M.: Visibility problems for polyhedral terrains. J. Symb. Comput. 7, 11–30 (1989) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Eidenbenz, S.J., Stamm, C., Widmayer, P.: Inapproximability results for guarding polygons and terrains. Algorithmica 31, 79–113 (2001) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Guibas, L., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.: Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica 2, 209–233 (1987) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Gupta, P., Janardan, R., Smid, M.: Computational geometry: Generalized intersection searching. In: Mehta, D.P., Sahni, S. (eds.) Handbook of Data Structures and Applications, pp. 64.1–64.17. CRC Press, Boca Raton (2005) Google Scholar
  13. 13.
    Hershberger, J.: Finding the upper envelope of n line segments in O(nlog n) time. Inf. Process. Lett. 33, 169–174 (1989) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kaplan, H., Sharir, M., Verbin, E.: Colored intersection searching via sparse rectangular matrix multiplication. In: Proc. 22nd Annu. Sympos. Comput. Geom., pp. 52–60 (2006) Google Scholar
  15. 15.
    Matoušek, J.: Range searching with efficient hierarchical cuttings. Discrete Comput. Geom. 10, 157–182 (1993) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Megiddo, N.: Applying parallel computation algorithms in the design of serial algorithms. J. ACM 30, 852–865 (1983) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Nilsson, B.: Guarding art galleries: Methods for mobile guards. Doctoral Thesis, Dept. Comput. Sci., Lund University (1994) Google Scholar
  18. 18.
    Sharir, M.: The shortest watchtower and related problems for polyhedral terrains. Inf. Process. Lett. 29(5), 265–270 (1988) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Sharir, M., Agarwal, P.K.: Davenport Schinzel Sequences and Their Geometric Applications. Cambridge University Press, Cambridge (1995) MATHGoogle Scholar
  20. 20.
    Urrutia, J.: Art gallery and illumination problems. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 973–1026. Elsevier, Amsterdam (2000) CrossRefGoogle Scholar
  21. 21.
    Zhu, B.: Computing the shortest watchtower of a polyhedral terrain in O(nlog n) time. Comput. Geom. Theory Appl. 8, 181–193 (1997) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Pankaj K. Agarwal
    • 1
  • Sergey Bereg
    • 2
  • Ovidiu Daescu
    • 2
  • Haim Kaplan
    • 3
  • Simeon Ntafos
    • 2
  • Micha Sharir
    • 3
    • 4
  • Binhai Zhu
    • 5
  1. 1.Department of Computer ScienceDuke UniversityDurhamUSA
  2. 2.Department of Computer ScienceUniversity of Texas at DallasRichardsonUSA
  3. 3.School of Computer ScienceTel Aviv UniversityTel AvivIsrael
  4. 4.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA
  5. 5.Department of Computer ScienceMontana State UniversityBozemanUSA

Personalised recommendations