Multiline Addressing by Network Flow
- 352 Downloads
- 3 Citations
Abstract
We consider an optimization problem arising in the design of controllers for OLED displays. Our objective is to minimize amplitude of the electrical current through the diodes which has a direct impact on the lifetime of such a display. Modeling the problem in mathematical terms yields a class of network flow problems where we group the arcs and pay in each group only for the arc carrying the maximum flow. We develop (fully) combinatorial approximation heuristics suitable for being implemented in the hardware of a control device that drives an OLED display.
Keywords
Combinatorial optimization Network design OLED Algorithm engineering Matrix decompositionReferences
- 1.Xu, C., Wahl, J., Eisenbrand, F., Karrenbauer, A., Soh, K.M., Hitzelberger, C.: Method for triggering matrix displays. German Patent Application 10 2005 063 159 PCT/EP2006/012362 (filed 12/30/2005, pending) Google Scholar
- 2.Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Algorithms and Combinatorics, vol. 2. Springer, Berlin (1988) zbMATHGoogle Scholar
- 3.Khachiyan, L.: A polynomial algorithm in linear programming. Dokl. Akad. Nauk SSSR 244, 1093–1097 (1979) zbMATHMathSciNetGoogle Scholar
- 4.Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling-salesman problem. J. Oper. Res. Soc. Am. 2, 393–410 (1954) MathSciNetGoogle Scholar
- 5.Garg, N., Könemann, J.: Faster and simpler algorithms for multicommodity flow and other fractional packing problems, FOCS pp. 300–309 (1998) Google Scholar
- 6.Xu, C., Karrenbauer, A., Soh, K.M., Wahl, J.: A new addressing scheme for PM OLED display. In: Morreale, J. (ed.) SID 2007 International Symposium Digest of Technical Papers. Society for Information Display, vol. XXXVIII, pp. 97–100. Long Beach, USA (2007) Google Scholar
- 7.Eisenbrand, F., Karrenbauer, A., Xu, C.: Algorithms for longer OLED lifetime. In: Demetrescu, C. (ed.) WEA 2007. Lecture Notes in Computer Science, vol. 4525, pp. 338–351. Springer, Berlin (2007) Google Scholar
- 8.Paatero, P., Tapper, U.: Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5, 111–126 (1994) CrossRefGoogle Scholar
- 9.Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization, Adv. Neural Inf. Process. Syst. 13 (2001) Google Scholar
- 10.Smith, E., Routley, P., Foden, C.: Processing digital data using non-negative matrix factorization. Patent GB 2421604A, pending (2005) Google Scholar
- 11.Smith, E.C.: Total matrix addressing (TMA™). In: Morreale, J. (ed.) SID 2007 International Symposium Digest of Technical Papers. Society for Information Display, vol. XXXVIII, pp. 93–96. Long Beach, USA (2007) Google Scholar
- 12.Ehrgott, M., Hamacher, H.W., Nußbaum, M.: Decomposition of matrices and static multileaf collimators: a survey, vol. 12, pp. 25–46 (2007) Google Scholar
- 13.Murano, S., Burghart, M., Birnstock, J., Wellmann, P., Vehse, M., Werner, A., Canzler, T., Stübinger, T., He, G., Pfeiffer, M., Boerner, H.: Highly efficient white OLEDs for lighting applications. SPIE, San Diego (2005) Google Scholar
- 14.Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Englewood Cliffs (1993) Google Scholar
- 15.Schrijver, A.: Combinatorial Optimization—Polyhedra and Efficiency. Algorithms and Combinatorics, vol. 24. Springer, Berlin (2003) zbMATHGoogle Scholar
- 16.Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1(2), 169–197 (1981) zbMATHCrossRefMathSciNetGoogle Scholar
Copyright information
Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.