, Volume 57, Issue 4, pp 769–795 | Cite as

Fully Polynomial Approximation Schemes for a Symmetric Quadratic Knapsack Problem and its Scheduling Applications

  • Hans Kellerer
  • Vitaly A. Strusevich


We design a fully polynomial-time approximation scheme (FPTAS) for a knapsack problem to minimize a symmetric quadratic function. We demonstrate how the designed FPTAS can be adopted for several single machine scheduling problems to minimize the sum of the weighted completion times. The applications presented in this paper include problems with a single machine non-availability interval (for both the non-resumable and the resumable scenarios) and a problem of planning a single machine maintenance period; the latter problem is closely related to a single machine scheduling problem with two competing agents. The running time of each presented FPTAS is strongly polynomial.


Quadratic knapsack Single machine scheduling Total weighted completion time Availability constraints Scheduling agents FPTAS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adiri, I., Bruno, J., Frostig, E., Rinnooy Kan, A.H.G.: Single machine flow-time scheduling with a single breakdown. Acta Inf. 26, 679–696 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Agnetis, A., Mirchandani, P.B., Pacciarelli, D., Pacifici, A.: Scheduling problems with two competing agents. Oper. Res. 52, 229–242 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Badics, T., Boros, E.: Minimization of half-products. Math. Oper. Res. 33, 649–660 (1998) CrossRefMathSciNetGoogle Scholar
  4. 4.
    Breit, J., Schmidt, G., Strusevich, V.A.: Non-preemptive two-machine open shop scheduling with non-availability constraints. Math. Method. Oper. Res. 57, 217–234 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Kacem, I., Chu, C.: Worst-case analysis of the WSPT and MWSPT rules for single machine scheduling with one planned setup period. Eur. J. Oper. Res. 187, 1080–1089 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Janiak, A., Kovalyov, M.Y., Kubiak, W., Werner, F.: Positive half-products and scheduling with controllable processing times. Eur. J. Oper. Res. 165, 416–422 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004) zbMATHGoogle Scholar
  8. 8.
    Kovalyov, M.Y., Kubiak, W.: A fully polynomial approximation scheme for weighted earliness-tardiness problem. Oper. Res. 47, 757–761 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Kubiak, W.: New results on the completion time variance minimization. Discrete Appl. Math. 58, 157–168 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kubiak, W.: Minimization of ordered, symmetric half-products. Discrete Appl. Math. 146, 287–300 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Lee, C.-Y.: Machine scheduling with an availability constraint. J. Glob. Optim. 9, 395–416 (1996) zbMATHCrossRefGoogle Scholar
  12. 12.
    Lee, C.-Y.: Machine scheduling with availability constraints. In: Leung, J.Y.-T. (ed.) Handbook of Scheduling: Algorithms, Models and Performance Analysis, pp. 22-1–22-13. Chapman & Hall/CRC, London (2004) Google Scholar
  13. 13.
    Lee, C.-Y., Liman, S.D.: Single machine flow time scheduling with scheduled maintenance. Acta Inf. 29, 375–382 (1992) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Pisinger, D.: The quadratic knapsack problem—a survey. Discrete Appl. Math. 155, 623–648 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Sadfi, C., Penz, B., Rapin, C., Błažewicz, J., Formanowicz, P.: An improved approximation algorithm for the single machine total completion time scheduling problem with availability constraints. Eur. J. Oper. Res. 161, 3–10 (2005) zbMATHCrossRefGoogle Scholar
  16. 16.
    Smith, W.E.: Various optimizers for single stage production. Nav. Res. Logist. Q 3, 59–66 (1956) CrossRefGoogle Scholar
  17. 17.
    Wang, G., Sun, H., Chu, C.: Preemptive scheduling with availability constraints to minimize total weighted completion times. Ann. Oper. Res. 133, 183–192 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Woeginger, G.J.: When does a dynamic programming formulation guarantee the existence of an FPTAS? INFORMS J. Comput. 12, 57–75 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Woeginger, G.J.: Private communication (2005) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Institut für Statistik und Operations ResearchUniversität GrazGrazAustria
  2. 2.School of Computing and Mathematical SciencesUniversity of Greenwich, Old Royal Naval CollegeLondonUK

Personalised recommendations