Advertisement

Algorithmica

, Volume 53, Issue 4, pp 474–487 | Cite as

Dynamic Connectivity for Axis-Parallel Rectangles

  • Peyman Afshani
  • Timothy M. Chan
Article
  • 105 Downloads

Abstract

In this paper we give a fully dynamic data structure to maintain the connectivity of the intersection graph of n axis-parallel rectangles. The amortized update time (insertion and deletion of rectangles) is \(O(n^{10/11}\mathop {\mathrm {polylog}}n)=O(n^{0.910})\) and the query time (deciding whether two given rectangles are connected) is O(1). It slightly improves the update time (O(n 0.94)) of the previous method while drastically reducing the query time (near O(n 1/3)). In addition, our method does not use fast matrix multiplication results and supports a wider range of queries.

Keywords

Data structures Dynamic data structures Computational geometry Dynamic connectivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, P.K., Erickson, J.: Geometric range searching and its relatives. In: Advances in Discrete and Computational Geometry, pp. 1–56. AMS Press, Reading (1999) Google Scholar
  2. 2.
    Chan, T.M.: Semi-online maintenance of geometric optima and measures. SIAM J. Comput. 32, 700–716 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Chan, T.M.: Dynamic subgraph connectivity with geometric applications. SIAM J. Comput. 36(3), 681–694 (2006). Preliminary version at STOC 2002 zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Clarkson, K.L., Shor, P.W.: Applications of random sampling in computational geometry, II. Discrete Comput. Geom. 4, 387–421 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symb. Comput. 9, 251–280 (1990) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Demetrescu, C., Italiano, G.F.: Trade-offs for fully dynamic transitive closure on DAGs: breaking through the O(n 2) barrier. J. ACM 52(2), 147–156 (2005) CrossRefMathSciNetGoogle Scholar
  7. 7.
    Edelsbrunner, H., Maurer, H.A.: On the intersection of orthogonal objects. Inf. Process. Lett. 13, 177–181 (1981) CrossRefMathSciNetGoogle Scholar
  8. 8.
    Fredman, M., Henzinger, M.: Lower bounds for fully dynamic connectivity problems in graphs. Algorithmica 22, 351–362 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gupta, P., Janardan, R., Smid, M.: Computational geometry: generalized intersection searching. In: Handbook of Data Structures and Applications, pp. 64.1–64.17. Chapman & Hall/CRC, Boca Raton (2005) Google Scholar
  10. 10.
    Henzinger, M.R., King, V.: Randomized dynamic graph algorithms with polylogarithmic time per operation. J. ACM 46, 76–103 (2000) MathSciNetGoogle Scholar
  11. 11.
    Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM 48, 723–760 (2001) zbMATHMathSciNetGoogle Scholar
  12. 12.
    Imai, H., Asano, T.: Finding the connected components and a maximum clique of an intersection graph of rectangles in the plane. J. Algorithms 4(4), 310–323 (1983) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    King, V.: Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive closure in digraphs. In: The Proceedings of the 40th Annual Symposium on Foundations of Computer Science, Washington, DC, USA, pp. 81–91 (1999) Google Scholar
  14. 14.
    King, V., Sagert, G.: A fully dynamic algorithm for maintaining the transitive closure. J. Comput. Syst. Sci. 65(1), 150–167 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Matoušek, J.: Lectures on Discrete Geometry. Springer, Berlin (2002) zbMATHGoogle Scholar
  16. 16.
    Pǎtraşcu, M., Demaine, E.D.: Logarithmic lower bounds in the cell-probe model. SIAM J. Comput. 35(4), 932–963 (2006) CrossRefMathSciNetGoogle Scholar
  17. 17.
    Roditty, L.: A faster and simpler fully dynamic transitive closure. In: The Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, Philadelphia, PA, USA, pp. 404–412 (2003) Google Scholar
  18. 18.
    Roditty, L., Zwick, U.: A fully dynamic reachability algorithm for directed graphs with an almost linear update time. In: The Proceedings of the 36th Annual ACM Symposium on Theory of Computing, New York, NY, USA, pp. 184–191 (2004) Google Scholar
  19. 19.
    Thorup, M.: Decremental dynamic connectivity. J. Algorithms 33(2), 229–243 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Thorup, M.: Near-optimal fully-dynamic graph connectivity. In: The Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, pp. 343–350 (2000) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations