, Volume 57, Issue 4, pp 747–768 | Cite as

Chordal Deletion is Fixed-Parameter Tractable



It is known to be NP-hard to decide whether a graph can be made chordal by the deletion of k vertices or by the deletion of k edges. Here we present a uniformly polynomial-time algorithm for both problems: the running time is f(k)⋅n α for some constant α not depending on k and some f depending only on k. For large values of n, such an algorithm is much better than trying all the O(n k ) possibilities. Therefore, the chordal deletion problem parameterized by the number k of vertices or edges to be deleted is fixed-parameter tractable. This answers an open question of Cai (Discrete Appl. Math. 127:415–429, 2003).


Chordal graphs Fixed-parameter tractability Chordal deletion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adler, I., Grohe, M., Kreutzer, S.: Computing excluded minors. In: SODA ’08: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 641–650. Society for Industrial and Applied Mathematics, Philadelphia (2008) Google Scholar
  2. 2.
    Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybern. 11(1–2), 1–21 (1993) MATHMathSciNetGoogle Scholar
  3. 3.
    Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett. 58(4), 171–176 (1996) MATHCrossRefGoogle Scholar
  4. 4.
    Cai, L.: Parameterized complexity of vertex colouring. Discrete Appl. Math. 127, 415–429 (2003) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Courcelle, B.: Graph rewriting: an algebraic and logic approach. In: Handbook of Theoretical Computer Science, vol. B, pp. 193–242. Elsevier, Amsterdam (1990) Google Scholar
  6. 6.
    Dehne, F., Fellows, M., Langston, M., Rosamond, F., Stevens, K.: An O(2O(k) n 3) FPT algorithm for the undirected feedback vertex set problem. Theory Comput. Syst. 41(3), 479–492 (2007) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Dom, M., Guo, J., Hüffner, F., Niedermeier, R., Truß, A.: Fixed-parameter tractability results for feedback set problems in tournaments. In: Algorithms and Complexity. Lecture Notes in Computer Science, vol. 3998, pp. 320–331. Springer, Berlin (2006) CrossRefGoogle Scholar
  8. 8.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, New York (1999) Google Scholar
  9. 9.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2006) Google Scholar
  10. 10.
    Gallai, T.: Maximum-minimum Sätze und verallgemeinerte Faktoren von Graphen. Acta Math. Acad. Sci. Hung. 12, 131–173 (1961) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980) MATHGoogle Scholar
  12. 12.
    Grohe, M.: Computing crossing numbers in quadratic time. J. Comput. Syst. Sci. 68(2), 285–302 (2004) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization. J. Comput. Syst. Sci. 72(8), 1386–1396 (2006) MATHCrossRefGoogle Scholar
  14. 14.
    Heggernes, P., Paul, C., Telle, J.A., Villanger, Y.: Interval completion with few edges. In: STOC ’07: Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, pp. 374–381. ACM, New York (2007) CrossRefGoogle Scholar
  15. 15.
    Ho, M.L.: Linear time algorithms for graphs close to chordal graphs. M. Phil. Thesis, Department of Computer Science and Engineering, The Chinese University of Hong Kong (2003) Google Scholar
  16. 16.
    Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of parameterized completion problems on chordal, strongly chordal, and proper interval graphs. SIAM J. Comput. 28(5), 1906–1922 (1999) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kleinberg, J.: Detecting a network failure. Internet Math. 1(1), 37–55 (2003) MATHMathSciNetGoogle Scholar
  18. 18.
    Kloks, T.: Treewidth. Lecture Notes in Computer Science, vol. 842. Springer, Berlin (1994) MATHGoogle Scholar
  19. 19.
    Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Lokshtanov, D.: Wheel-free deletion is W[2]-hard. In: Proceedings of the International Workshop on Parameterized and Exact Computation (IWPEC 2008). Lecture Notes in Computer Science, vol. 5018, pp. 141–147. Springer, Berlin (2008) CrossRefGoogle Scholar
  21. 21.
    Marx, D.: Parameterized coloring problems on chordal graphs. Theor. Comput. Sci. 351(3), 407–424 (2006) MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Marx, D., Schlotter, I.: Obtaining a planar graph by vertex deletion. In: 33rd International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2007). Lecture Notes in Computer Science, vol. 4769, pp. 292–303. Springer, Berlin (2007) CrossRefGoogle Scholar
  23. 23.
    Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge modification problems. Discrete Appl. Math. 113(1), 109–128 (2001) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32(4), 299–301 (2004) MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Robertson, N., Seymour, P.D.: Graph minors, XIII: the disjoint paths problem. J. Comb. Theory Ser. B 63(1), 65–110 (1995) MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5(2), 266–283 (1976) MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Algebr. Discrete Methods 2(1), 77–79 (1981) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Computer Science and Information TheoryBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations