Algorithmica

, Volume 57, Issue 4, pp 668–688 | Cite as

Approximate Shortest Paths Guided by a Small Index

Article
  • 99 Downloads

Abstract

Distance oracles and graph spanners are excerpts of a graph that allow to compute approximate shortest paths. Here, we consider the situation where it is possible to access the original graph in addition to the graph excerpt while computing paths. This allows for asymptotically much smaller excerpts than distance oracles or spanners. The quality of an algorithm in this setting is measured by the size of the excerpt (in bits), by how much of the original graph is accessed (in number of edges), and the stretch of the computed path (as the ratio between the length of the path and the distance between its end points). Because these three objectives are conflicting goals, we are interested in a good trade-off. We measure the number of accesses to the graph relative to the number of edges in the computed path.

We present a parametrized construction that, for constant stretches, achieves excerpt sizes and number of accessed edges that are both sublinear in the number of graph vertices. We also show that within these limits, a stretch smaller than 5 cannot be guaranteed.

Keywords

Approximate shortest path Graph spanner Distance oracle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Spencer, J.: The Probabilistic Method. Wiley, New York (1992) MATHGoogle Scholar
  2. 2.
    Althöfer, I., Das, G., Dobkin, D.P., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete Comput. Geom. 9(1), 81–100 (1993) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Baswana, S., Sen, S.: Approximate distance oracles for unweighted graphs in \(\tilde{O}(n^{2})\) time. In: J.I. Munro (ed.) Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 271–280 (2004) Google Scholar
  4. 4.
    Bollobás, B.: Extremal Graph Theory. Academic Press, San Diego (1978) MATHGoogle Scholar
  5. 5.
    Chvátal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4, 233–235 (1979) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries via 2-hop labels. SIAM J. Comput. 32(5), 1338–1355 (2003) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Demetrescu, C., Finocchi, I., Ribichini, A.: Trading off space for passes in graph streaming problems. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 714–723 (2006) Google Scholar
  8. 8.
    Demetrescu, C., Goldberg, A., Johnson, D. (eds.): 9th DIMACS Challenge on Shortest Paths (to appear). Available at http://www.dis.uniroma1.it/~challenge9
  9. 9.
    Dijkstra, E.W.: A note on two problems in connection with graphs. Numer. Math. 1, 269–271 (1959) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: Graph distances in the streaming model: the value of space. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 745–754. SIAM, Philadelphia (2005) Google Scholar
  11. 11.
    Garey, M.R., Johnson, D.S.: Computer and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979) Google Scholar
  12. 12.
    Goldberg, A., Harrelson, C.: Computing the shortest path: A* search meets graph theory. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, vol. 16 (2005) Google Scholar
  13. 13.
    Katriel, I., Meyer, U.: Elementary graph algorithms in external memory. In: Meyer, U., Sanders, P., Sibeyn, J.F. (eds.) Algorithms for Memory Hierarchies. Lecture Notes in Computer Science, vol. 2625, pp. 62–84. Springer, Berlin (2002) CrossRefGoogle Scholar
  14. 14.
    Meyer, U., Zeh, N.: I/O-efficient undirected shortest paths. In: Battista, G.D., Zwick, U. (eds.) Proceedings of the 11th Annual European Symposium on Algorithms. Lecture Notes in Computer Science, vol. 2832, pp. 434–445. Springer, Berlin (2003) Google Scholar
  15. 15.
    Peleg, D., Schäffer, A.A.: Graph spanners. J. Graph Theory 13(1), 99–116 (1989) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Prüfer, H.: Neuer Beweis eines Satzes über Permutationen. Arch. Math. Phys. 27, 742–744 (1918) Google Scholar
  17. 17.
    Regev, H.: The weight of the greedy graph spanner. Technical Report CS95-22, Weizmann Institute of Science, July 1995 Google Scholar
  18. 18.
    Sanders, P., Schultes, D.: Highway hierarchies hasten exact shortest path queries. In: Brodal, G.S., Leonardi, S. (eds.) Proceedings of the 13th Annual European Symposium on Algorithms. Lecture Notes in Computer Science, vol. 3669, pp. 568–579. Springer, Berlin (2005) Google Scholar
  19. 19.
    Stirling, J.: Methodus Differentialis. London (1730) Google Scholar
  20. 20.
    Thorup, M., Zwick, U.: Approximate distance oracles. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, pp. 183–192. Assoc. Comput. Mach. Press, New York (2001) CrossRefGoogle Scholar
  21. 21.
    Thorup, M., Zwick, U.: Approximate distance oracles. J. ACM 52(1), 1–24 (2005) MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Zwick, U.: Exact and approximate distances in graphs—a survey. In: auf der Heide, F.M. (ed.) Proceedings of the 9th Annual European Symposium on Algorithms. Lecture Notes in Computer Science, vol. 2161, pp. 33–48. Springer, Berlin (2001) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Institute of Theoretical Computer Science, ETH ZurichSwitzerland ETH ZentrumZürichSwitzerland
  2. 2.Fakultät für InformatikTechnische Universität MünchenGarchingGermany

Personalised recommendations