Algorithmica

, Volume 57, Issue 4, pp 653–667

Well Supported Approximate Equilibria in Bimatrix Games

Article

Abstract

In view of the apparent intractability of constructing Nash Equilibria (NE in short) in polynomial time, even for bimatrix games, understanding the limitations of the approximability of the problem is an important challenge.

In this work we study the tractability of a notion of approximate equilibria in bimatrix games, called well supported approximate Nash Equilibria (SuppNE in short). Roughly speaking, while the typical notion of approximate NE demands that each player gets a payoff at least an additive term less than the best possible payoff, in a SuppNE each player is assumed to adopt with positive probability only approximate pure best responses to the opponent’s strategy.

As a first step, we demonstrate the existence of SuppNE with small supports and at the same time good quality. This is a simple corollary of Althöfer’s Approximation Lemma, and implies a subexponential time algorithm for constructing SuppNE of arbitrary (constant) precision.

We then propose algorithms for constructing SuppNE in win lose and normalized bimatrix games (i.e., whose payoff matrices take values from {0,1} and [0,1] respectively). Our methodology for attacking the problem is based on the solvability of zero sum bimatrix games (via its connection to linear programming) and provides a 0.5-SuppNE for win lose games and a 0.667-SuppNE for normalized games.

To our knowledge, this paper provides the first polynomial time algorithms constructing ε-SuppNE for normalized or win lose bimatrix games, for any nontrivial constant 0≤ε<1, bounded away from 1.

Keywords

Bimatrix games Well supported approximate Nash equilibria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbott, T., Kane, D., Valiant, P.: On the complexity of two-player win-lose games. In: Proc. of 46th IEEE Symp. on Found. of Comp. Sci. (FOCS ’05), pp. 113–122 (2005) Google Scholar
  2. 2.
    Addario-Berry, L., Olver, N., Vetta, A.: A polynomial time algorithm for finding Nash equilibria in planar win-lose games. J. Graph Algorithms Appl. 11(1), 309–319 (2007) MATHMathSciNetGoogle Scholar
  3. 3.
    Althöfer, I.: On sparse approximations to randomized strategies and convex combinations. Linear Algebra Appl. 199, 339–355 (1994) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bárány, I., Vempala, S., Vetta, A.: Nash equilibria in random games. In: Proc. of 46th IEEE Symp. on Found. of Comp. Sci. (FOCS ’05), pp. 123–131. IEEE Comput. Soc., Los Alamitos (2005) CrossRefGoogle Scholar
  5. 5.
    Bomze, I., de Klerk, E.: Solving standard quadratic optimization problems via linear, semidefinite and copositive programming. J. Global Optim. 24, 163–185 (2002) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bosse, H., Byrka, J., Markakis, E.: New algorithms for approximate Nash equilibria in bimatrix games. In: Proc. of 3rd W. on Internet and Net. Econ. (WINE ’07). LNCS, vol. 4858, pp. 17–29. Springer, Berlin (2007) Google Scholar
  7. 7.
    Chen, X., Deng, X.: Settling the complexity of 2-player Nash equilibrium. In: Proc. of 47th IEEE Symp. on Found. of Comp. Sci. (FOCS ’06), pp. 261–272. IEEE Comput. Soc., Los Alamitos (2006) CrossRefGoogle Scholar
  8. 8.
    Chen, X., Deng, X., Teng, S.H.: Computing Nash equilibria: Approximation and smoothed complexity. In: Proc. of 47th IEEE Symp. on Found. of Comp. Sci. (FOCS ’06), pp. 603–612. IEEE Comput. Soc., Los Alamitos (2006) CrossRefGoogle Scholar
  9. 9.
    Chen, X., Deng, X., Teng, S.H.: Sparse games are hard. In: Proc. of 2nd W. on Internet and Net. Econ. (WINE ’06). LNCS, vol. 4286, pp. 262–273. Springer, Berlin (2006) Google Scholar
  10. 10.
    Conitzer, V., Sandholm, T.: Complexity results about Nash equilibria. In: Proc. of 18th Int. Joint Conf. on Art. Intel. (IJCAI ’03), pp. 765–771. Morgan Kaufmann, San Mateo (2003) Google Scholar
  11. 11.
    Daskalakis, C., Papadimitriou, C.: Three player games are hard. Technical Report TR05-139, Electr. Coll. on Comp. Compl. (ECCC) (2005) Google Scholar
  12. 12.
    Daskalakis, C., Goldberg, P., Papadimitriou, C.: The complexity of computing a Nash equilibrium. In: Proc. of 38th ACM Symp. on Th. of Comp. (STOC ’06), pp. 71–78. Assoc. Comput. Mach., New York (2006) Google Scholar
  13. 13.
    Daskalakis, C., Mehta, A., Papadimitriou, C.: A note on approximate equilibria. In: Proc. of 2nd W. on Internet and Net. Econ. (WINE ’06). LNCS, vol. 4286, pp. 297–306. Springer, Berlin (2006) Google Scholar
  14. 14.
    Daskalakis, C., Mehta, A., Papadimitriou, C.: Progress in approximate Nash equilibrium. In Proc. of 8th ACM Conf. on El. Comm. (EC ’07), pp. 355–358 (2007) Google Scholar
  15. 15.
    Feder, T., Nazerzadeh, H., Saberi, A.: Approximating Nash equilibria using small–support strategies. In Proc. of 8th ACM Conf. on El. Comm. (EC ’07), pp. 352–354 (2007) Google Scholar
  16. 16.
    Gilboa, I., Zemel, E.: Nash and correlated equilibria: Some complexity considerations. Games Econ. Behav. 1, 80–93 (1989) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Goldberg, P., Papadimitriou, C.: Reducibility among equilibrium problems. In: Proc. of 38th ACM Symp. on Th. of Comp. (STOC ’06), pp. 61–70. Assoc. Comput. Mach., New York (2006) Google Scholar
  18. 18.
    Kannan, R., Theobald, T.: Games of fixed rank: A hierarchy of bimatrix games. In Proc. of 18th ACM-SIAM Symp. on Discr. Alg. (SODA ’07) (2007) Google Scholar
  19. 19.
    Kontogiannis, S., Spirakis, P.: Well supported approximate equilibria in bimatrix games: A graph theoretic approach. In: Proc. of 32nd Int. Symp. on Math. Found. of Comp. Sci. (MFCS ’07). LNCS, vol. 4708, pp. 596–608. Springer, Berlin (2007) Google Scholar
  20. 20.
    Kontogiannis, S., Spirakis, P.: Efficient algorithms for constant well supported approximate equilibria in bimatrix games. In: Proc. of 34th Int. Col. on Aut., Lang. and Progr. (ICALP ’07). LNCS, vol. 4596, pp. 595–606. Springer, Berlin (2007) Google Scholar
  21. 21.
    Kontogiannis, S., Panagopoulou, P., Spirakis, P.: Polynomial algorithms for approximating Nash equilibria in bimatrix games. In: Proc. of 2nd W. on Internet and Net. Econ. (WINE ’06). LNCS, vol. 4286, pp. 286–296. Springer, Berlin (2006) Google Scholar
  22. 22.
    Lemke, C.E., Howson, J.T. Jr.: Equilibrium points of bimatrix games. J. Soc. Ind. Appl. Math. 12, 413–423 (1964) MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Lipton, R., Markakis, E., Mehta, A.: Playing large games using simple strategies. In: Proc. of 4th ACM Conf. on El. Comm. (EC ’03), pp. 36–41. Assoc. Comput. Mach., New York (2003) CrossRefGoogle Scholar
  24. 24.
    Nash, J.: Noncooperative games. Ann. Math. 54, 289–295 (1951) CrossRefMathSciNetGoogle Scholar
  25. 25.
    Nesterov, Y.: Random walk in a simplex and quadratic optimization over convex polytopes. Technical report, DOCUMENT DE TRAVAIL 2003/71, EUEN/CORE—Center for operations research and econometrics, CORE (2003) Google Scholar
  26. 26.
    Papadimitriou, C.: On the complexity of the parity argument and other inefficient proofs of existence. J. Comput. Syst. Sci. 48, 498–532 (1994) MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Papadimitriou, C.: Algorithms, games and the Internet. In Proc. of 33rd ACM Symp. on Th. of Comp. (STOC ’01), pp. 749–753 (2001) Google Scholar
  28. 28.
    Savani, R., von Stengel, B.: Hard-to-solve bimatrix games. Econometrica 74(2), 397–429 (2006) MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Tsaknakis, H., Spirakis, P.: An optimization approach for approximate Nash equilibria. In: Proc. of 3rd W. on Internet and Net. Econ. (WINE ’07). LNCS, vol. 4858, pp. 42–56. Springer, Berlin (2007) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of IoanninaIoanninaGreece
  2. 2.Research Academic Computer Technology InstituteRio-PatraGreece

Personalised recommendations