Algorithmica

, Volume 55, Issue 2, pp 346–374 | Cite as

Graph Spanners in the Streaming Model: An Experimental Study

  • Giorgio Ausiello
  • Camil Demetrescu
  • Paolo G. Franciosa
  • Giuseppe F. Italiano
  • Andrea Ribichini
Article

Abstract

This article reports the results of an extensive experimental analysis of efficient algorithms for computing graph spanners in the data streaming model, where an (α,β)-spanner of a graph G is a subgraph SG such that for each pair of vertices the distance in S is at most α times the distance in G plus β. To the best of our knowledge, this is the first computational study of graph spanner algorithms in a streaming setting. We compare experimentally the randomized algorithms proposed by Baswana (http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0611023) and by Elkin (In: Proceedings of the 34th International Colloquium on Automata, Languages and Programming (ICALP 2007), Wroclaw, Poland, pp. 716–727, 9–13 July 2007) for general stretch factors with the deterministic algorithm presented by Ausiello et al. (In: Proceedings of the 15th Annual European Symposium on Algorithms (ESA 2007), Engineering and Applications Track, Eilat, Israel, 8–10 October 2007. LNCS, vol. 4698, pp. 605–617, 2007), designed for building small stretch spanners. All the algorithms we implemented work in a data streaming model where the input graph is given as a stream of edges in arbitrary order, and all of them need a single pass over the data. Differently from the algorithm in Ausiello et al., the algorithms in Baswana (http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0611023) and Elkin (In: Proceedings of the 34th International Colloquium on Automata, Languages and Programming (ICALP 2007), Wroclaw, Poland, pp. 716–727, 9–13 July 2007) need to know in advance the number of vertices in the graph.

The results of our experimental investigation on several input families confirm that all these algorithms are very efficient in practice, finding spanners with stretch and size much smaller than the theoretical bounds and comparable to those obtainable by off-line algorithms. Moreover, our experimental findings confirm that small values of the stretch factor are the case of interest in practice, and that the algorithm by Ausiello et al. tends to produce spanners of better quality than the algorithms by Baswana and Elkin, while still using a comparable amount of time and space resources.

Keywords

Graph algorithms Graph spanners Data streams Experimental algorithmics Algorithm engineering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Experimental package. Available at http://www.dis.uniroma1.it/~ribichini/spanner/
  2. 2.
    Aggarwal, G., Datar, M., Rajagopalan, S., Ruhl, M.: On the streaming model augmented with sorting primitive. In: Proc. FOCS’04, pp. 540–549 (2004) Google Scholar
  3. 3.
    Albert, R.: Scale-free networks in cell biology. J. Cell Sci. 118, 4947–4957 (2005) CrossRefGoogle Scholar
  4. 4.
    Althofer, I., Das, G., Dobkin, D.P., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete Comput. Geom. 9, 81–100 (1993) CrossRefMathSciNetGoogle Scholar
  5. 5.
    Ausiello, G., Demetrescu, C., Franciosa, P.G., Italiano, G.F., Ribichini, A.: Small stretch spanners in the streaming model: New algorithms and experiments. In: Proceedings of the 15th Annual European Symposium on Algorithms (ESA 2007), Engineering and Applications Track, Eilat, Israel, 8–10 October 2007. LNCS, vol. 4698, pp. 605–617. Springer, Berlin (2007) Google Scholar
  6. 6.
    Ausiello, G., Franciosa, P.G., Italiano, G.F.: Small stretch spanners on dynamic graphs. J. Graph Algorithms Appl. 10(2), 365–385 (2006) MATHMathSciNetGoogle Scholar
  7. 7.
    Awerbuch, B.: Complexity of network synchronization. J. ACM 32(4), 804–823 (1985) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Baswana, S.: Dynamic algorithms for graph spanners. In: Proc. ESA’06, pp. 76–87 (2006) Google Scholar
  9. 9.
    Baswana, S.: Faster streaming algorithms for graph spanners (2006). http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0611023
  10. 10.
    Baswana, S., Kavitha, T., Mehlhorn, K., Pettie, S.: New constructions of (α, β)-spanners and purely additive spanners. In: Proc. SODA’05, pp. 672–681 (2005) Google Scholar
  11. 11.
    Baswana, S., Sen, S.: A simple linear time algorithm for computing (2k−1)-spanner of O(n 1+1/k) size for weighted graphs. In: Proc. ICALP’03, pp. 384–396 (2003) Google Scholar
  12. 12.
    Buriol, L., Frahling, G., Leonardi, S., Marchetti-Spaccamela, A., Sohler, C.: Counting triangles in data streams. In: Proceedings of the 25th ACM Symposium on Principles of Database Systems (PODS’06), pp. 253–262 (2006) Google Scholar
  13. 13.
    Cai, L.: NP-completeness of minimum spanner problems. Discrete Appl. Math. Combin. Oper. Res. Comput. Sci. 48(2), 187–194 (1994) MATHCrossRefGoogle Scholar
  14. 14.
    Cai, L., Keil, J.M.: Degree-bounded spanners. Parallel Process. Lett. 3, 457–468 (1993) CrossRefMathSciNetGoogle Scholar
  15. 15.
    Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: A recursive model for graph mining. In: Proceedings of the 4th SIAM International Conference on Data Mining (2004) Google Scholar
  16. 16.
    Chew, L.P.: There are planar graphs almost as good as the complete graph. J. Comput. Syst. Sci. 39(2), 205–219 (1989) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Das, G., Joseph, D.: Which triangulations approximate the complete graph? In: Proc. Int. Symp. on Optimal Algorithms. LNCS, vol. 401, pp. 168–192. Springer, Berlin (1989) Google Scholar
  18. 18.
    Dobkin, D., Friedman, S.J., Supowit, K.J.: Delaunay graphs are almost as good as complete graphs. Discrete Comput. Geom. 5, 399–407 (1990) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Elkin, M.: Streaming and fully dynamic centralized algorithms for constructing and maintaining sparse spanners. In: Proceedings of the 34th International Colloquium on Automata, Languages and Programming (ICALP 2007), Wroclaw, Poland, pp. 716–727, 9–13 July 2007 Google Scholar
  20. 20.
    Elkin, M., Zhang, J.: Efficient algorithms for constructing (1+ε,β)-spanners in the distributed and streaming models. Distrib. Comput. 18(5), 375–385 (2006) CrossRefGoogle Scholar
  21. 21.
    Erdős, P., Rényi, A.: On random graphs. Publ. Math. Debrecen 6, 290–291 (1959) MathSciNetGoogle Scholar
  22. 22.
    Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. In: SIGCOMM ’99: Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, New York, NY, USA, pp. 251–262. ACM Press, New York (1999) CrossRefGoogle Scholar
  23. 23.
    Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: Graph distances in the streaming model: the value of space. In: Proc. SODA’05, pp. 745–754 (2005) Google Scholar
  24. 24.
    Liestman, A.L., Shermer, T.: Additive graph spanners. Networks 23, 343–364 (1993) MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Liestman, A.L., Shermer, T.: Grid spanners. Networks 23, 122–133 (1993) Google Scholar
  26. 26.
    Peleg, D., Shäffer, A.: Graph spanners. J. Graph Theory 13, 99–116 (1989) MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. SIAM J. Comput. 18(4), 740–747 (1989) MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Richards, D., Liestman, A.L.: Degree-constrained pyramid spanners. JPDC: J. Parallel Distrib. Comput. 25, 1–6 (1995) CrossRefGoogle Scholar
  29. 29.
    Roditty, L., Thorup, M., Zwick, U.: Deterministic constructions of approximate distance oracles and spanners. In: Proc. ICALP’05, pp. 261–272 (2005) Google Scholar
  30. 30.
    Zwick, U.: Personal communication Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Giorgio Ausiello
    • 1
  • Camil Demetrescu
    • 1
  • Paolo G. Franciosa
    • 2
  • Giuseppe F. Italiano
    • 3
  • Andrea Ribichini
    • 1
  1. 1.Dipartimento di Informatica e SistemisticaSapienza Università di RomaRomaItaly
  2. 2.Dipartimento di Statistica, Probabilità e Statistiche ApplicateSapienza Università di RomaRomaItaly
  3. 3.Dipartimento di Informatica, Sistemi e ProduzioneUniversità di Roma “Tor Vergata”RomaItaly

Personalised recommendations