Algorithmica

, Volume 56, Issue 4, pp 394–412

A Faster Algorithm for Computing the Principal Sequence of Partitions of a Graph

Article
  • 184 Downloads

Abstract

We consider the following problem: given an undirected weighted graph G=(V,E,c) with nonnegative weights, minimize function c(δ(Π))−λ|Π| for all values of parameter λ. Here Π is a partition of the set of nodes, the first term is the cost of edges whose endpoints belong to different components of the partition, and |Π| is the number of components. The current best known algorithm for this problem has complexity O(|V|2) maximum flow computations. We improve it to |V| parametric maximum flow computations. We observe that the complexity can be improved further for families of graphs which admit a good separator, e.g. for planar graphs.

Keywords

Principal sequence of partitions Network attack Network strength Minimum cut/maximum flow Parametric algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cunningham, W.H.: Optimal attack and reinforcement of a network. J. ACM 32, 549–561 (1985) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Narayanan, H.: The principal lattice of partitions of a submodular function. In: Linear Algebra and Its Applications, vol. 144, pp. 179–216 (1991) Google Scholar
  3. 3.
    Barahona, F.: Separating from the dominant of the spanning tree polytope. Oper. Res. Let. 12, 201–203 (1992) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    d’Auriac, J.-C.A., Igloi, F., Preissmann, M., Sebo, A.: Optimal cooperation and submodularity for computing Potts’ partition functions with a large number of states. J. Phys. A: Math. Gen. 35, 6973–6983 (2002) MATHCrossRefGoogle Scholar
  5. 5.
    Imai, H.: Network flow algorithms for lower truncated transversal polymatroids. J. Oper. Res. Soc. Jpn. 26, 186–210 (1983) MATHGoogle Scholar
  6. 6.
    Patkar, S., Narayanan, H.: Fast on-line/off-line algorithms for optimal reinforcement of a network and its connections with principal partition. J. Comb. Optim. 7(1), 45–68 (2003) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gallo, G., Grigoriadis, M., Tarjan, R.E.: A fast parametric network flow algorithm. SIAM J. Comput. 18, 30–55 (1989) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Lipton, R., Tarjan, R.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36, 177–189 (1979) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Narayanan, H.: Submodular Functions and Electrical Networks. Annals of Discrete Mathematics, vol. 54. North Holland, Amsterdam (1997) MATHGoogle Scholar
  10. 10.
    Patkar, S., Narayanan, H.: Principal lattice of partitions of submodular functions on graphs: fast algorithms for principal partition and generic rigidity. In: Proc. of the 3rd Ann. Int. Symp. on Algorithms and Computation (ISAAC), Lecture Notes in Computer Science, vol. 650, pp. 41–50. Springer, Berlin (1992) Google Scholar
  11. 11.
    Gusfield, D.: Computing the strength of a graph. SIAM J. Comput. 20, 639–654 (1991) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Cheng, E., Cunningham, W.H.: A faster algorithm for computing the strength of a network. Inf. Process. Lett. 49, 209–212 (1994) MATHCrossRefGoogle Scholar
  13. 13.
    Gabow, H.N.: Algorithms for graphic polymatroids and parametric s-sets. J. Algorithms 26, 48–86 (1998) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Fujishige, S.: Submodular Functions and Optimization. Annals of Discrete Mathematics. North Holland, Amsterdam (1991) MATHGoogle Scholar
  15. 15.
    Edmonds, J.: Submodular functions, matroids and certain polyhedra. In: Proc. Calgary Int. Conf. on Combinatorial Structures and Applications, pp. 69–87 (1970) Google Scholar
  16. 16.
    Stone, H.S.: Critical load factors in two-processor distributed systems. IEEE Trans. Softw. Eng. 4(3), 254–258 (1978) CrossRefGoogle Scholar
  17. 17.
    Eisner, M.J., Severence, D.G.: Mathematical techniques for efficient record segmentation in large shared databases. J. ACM 23(4), 619–635 (1976) MATHCrossRefGoogle Scholar
  18. 18.
    McCormick, S.T.: Fast algorithms for parametric scheduling come from extensions to parametric maximum flow. Oper. Res. 47(5), 744–756 (1999) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. J. ACM 35(4), 921–940 (1988) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst. Sci. 26(3), 362–391 (1983) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM 32(3), 652–686 (1985) MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Baïou, M., Barahona, F., Mahjoub, A.R.: Separation of partition inequalities. Math. Oper. Res. 25(2), 243–254 (2000) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Adastral Park CampusUniversity College LondonMartlesham HeathUK

Personalised recommendations