, 56:160 | Cite as

Augmenting the Connectivity of Outerplanar Graphs

  • A. García
  • F. Hurtado
  • M. Noy
  • J. Tejel


We provide an optimal algorithm for the problem of augmenting an outerplanar graph G by adding a minimum number of edges in such a way that the augmented graph G′ is outerplanar and 2-connected. We also solve optimally the same problem when instead we require G′ to be 2-edge-connected.


Graph augmentation Outerplanar graph 


  1. 1.
    Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading (1974) MATHGoogle Scholar
  2. 2.
    Bollobás, B.: Modern Graph Theory. Springer, New York (1998) MATHGoogle Scholar
  3. 3.
    Cheng, E., Jordán, T.: Successive edge-connectivity augmentation problems. Math. Program. 84, 577–593 (1999) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Eswaran, K.P., Tarjan, R.E.: Augmentation problems. SIAM J. Comput. 5, 653–665 (1976) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    García, A., Hernando, C., Hurtado, F., Noy, M., Tejel, J.: Packing trees into planar graphs. J. Graph Theory 40, 172–181 (2002) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hsu, T.S.: On four-connecting a triconnected graph. In: Proc. 33rd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 70–79 (1992) Google Scholar
  7. 7.
    Jackson, B., Jordán, T.: Independence free graphs and vertex connectivity augmentation. J. Comb. Theory Ser. B 94, 31–77 (2005) MATHCrossRefGoogle Scholar
  8. 8.
    Kant, G.: Algorithms for drawing planar graphs. Ph.D. thesis, Dept. of Computer Science, Utrecht University (1993) Google Scholar
  9. 9.
    Kant, G.: Augmenting outerplanar graphs. J. Algorithms 21, 1–25 (1996) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Nagamochi, H., Ibaraki, T.: Deterministic O(nm) time edge-splitting in undirected graphs. J. Comb. Optim. 1, 5–46 (1997) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Watanabe, T., Nakamura, A.: Edge-connectivity augmentation problems. J. Comput. Syst. Sci. 35, 96–144 (1987) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Watanabe, T., Nakamura, A.: A smallest augmentation to 3-connect a graph. Discrete Appl. Math. 28, 183–186 (1990) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Dep. Métodos Estadísticos, IUMAUniversidad de ZaragozaZaragozaSpain
  2. 2.Departament de Matemàtica Aplicada IIUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations