, Volume 54, Issue 1, pp 25–53 | Cite as

Small Area Drawings of Outerplanar Graphs

  • Giuseppe Di BattistaEmail author
  • Fabrizio Frati


We show three linear-time algorithms for constructing planar straight-line grid drawings of outerplanar graphs. The first and the second algorithm are for balanced outerplanar graphs. Both require linear area. The drawings produced by the first algorithm are not outerplanar while those produced by the second algorithm are. On the other hand, the first algorithm constructs drawings with better angular resolution. The third algorithm constructs outerplanar drawings of general outerplanar graphs with O(n 1.48) area. Further, we study the interplay between the area requirements of the drawings of an outerplanar graph and the area requirements of a special class of drawings of its dual tree.


Planar Graph Binary Tree Dual Graph Outerplanar Graph Black Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Biedl, T.: Drawing outer-planar graphs in O(nlog n) area. In: Goodrich, M. (ed.) Graph Drawing (GD ’02). Lecture Notes in Computer Science, vol. 2528, pp. 54–65. Springer, Berlin (2002) CrossRefGoogle Scholar
  2. 2.
    Bose, P.: On embedding an outer-planar graph in a point set. In: Di Battista, G. (ed.) Graph Drawing (GD ’97). Lecture Notes in Computer Science, vol. 1353, pp. 25–36. Springer, Berlin (1997) CrossRefGoogle Scholar
  3. 3.
    Brandenburg, F.J., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Liotta, G., Mutzel, P.: Selected open problems in graph drawing. In: Liotta, G. (ed.) Graph Drawing (GD ’03). Lecture Notes in Computer Science, vol. 2912, pp. 515–539. Springer, Berlin (2003) Google Scholar
  4. 4.
    Chan, T.M.: A near-linear area bound for drawing binary trees. Algorithmica 34(1), 1–13 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chrobak, M., Payne, T.H.: A linear-time algorithm for drawing a planar graph on a grid. Inf. Process. Lett. 54(4), 241–246 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice Hall, Upper Saddle River (1999) zbMATHGoogle Scholar
  8. 8.
    Dolev, D., Leighton, F.T., Trickey, H.: Planar embedding of planar graphs. Advances in Computing Research, vol. 2: VLSI Theory (1984) Google Scholar
  9. 9.
    Felsner, S., Liotta, G., Wismath, S.K.: Straight-line drawings on restricted integer grids in two and three dimensions. J. Graph Algorithms Appl. 7(4), 363–398 (2003) zbMATHMathSciNetGoogle Scholar
  10. 10.
    Garg, A., Rusu, A.: Straight-line drawings of binary trees with linear area and arbitrary aspect ratio. J. Graph Algorithms Appl. 8(2), 135–160 (2004) zbMATHMathSciNetGoogle Scholar
  11. 11.
    Garg, A., Rusu, A.: Area-efficient planar straight-line drawings of outerplanar graphs. Discrete Appl. Math. 155(9), 1116–1140 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation with vertices at specified points. Am. Math. Mon. 98(2), 165–166 (1991) CrossRefMathSciNetGoogle Scholar
  13. 13.
    Schnyder, W.: Embedding planar graphs on the grid, In: ACM-SIAM Sympos. Discr. Alg. (SODA ’90), pp. 138–148 (1990) Google Scholar
  14. 14.
    Valiant, L.G.: Universality considerations in VLSI circuits. IEEE Trans. Comput. 30(2), 135–140 (1981) zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Dipartimento di Informatica e AutomazioneUniversità Roma TreRomaItaly

Personalised recommendations