, Volume 50, Issue 4, pp 418–445

Random Bichromatic Matchings

  • Nayantara Bhatnagar
  • Dana Randall
  • Vijay V. Vazirani
  • Eric Vigoda


Given a graph with edges colored Red and Blue, we study the problem of sampling and approximately counting the number of matchings with exactly kRed edges. We solve the problem of estimating the number of perfect matchings with exactly kRed edges for dense graphs. We study a Markov chain on the space of all matchings of a graph that favors matchings with kRed edges. We show that it is rapidly mixing using non-traditional canonical paths that can backtrack. We show that this chain can be used to sample matchings in the 2-dimensional toroidal lattice of any fixed size with kRed edges, where the horizontal edges are Red and the vertical edges are Blue.


Markov chains Matchings Sampling Approximate counting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burton, R., Pemantle, R.: Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances. Ann. Probab. 21(3), 1329–1371 (1993) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Fisher, M.E.: Statistical mechanics of dimers on a plane lattice. Phys. Rev. 124, 1664–1672 (1961) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Fowler, R.H., Rushbrooke, G.S.: Statistical theory of perfect solutions. Trans. Faraday Soc. 33, 1272–1294 (1937) CrossRefGoogle Scholar
  4. 4.
    Heilmann, O.J., Leib, E.H.: Theory of monomer-dimer systems. Commun. Math. Phys. 25, 190–232 (1972) MATHCrossRefGoogle Scholar
  5. 5.
    Jerrum, M.: Counting, Sampling and Integrating: Algorithms and Complexity. Birkhäuser, Basel (2003) MATHGoogle Scholar
  6. 6.
    Jerrum, M., Sinclair, A.: Approximating the permanent. SIAM J. Comput. 18, 1149–1178 (1989) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Jerrum, M., Valiant, L., Vazirani, V.: Random generation of combinatorial structures from a uniform distribution. Theor. Comput. Sci. 43, 169–188 (1986) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Jerrum, M., Sinclair, A., Vigoda, E.: A polynomial-time approximation algorithm for the permanent of a matrix with non-negative entries. J. ACM 51(4), 671–697 (2004) CrossRefMathSciNetGoogle Scholar
  9. 9.
    Karzanov, A.V.: Maximum matching of given weight in complete and complete bipartite graphs. Kibernetica 1, 7–11 (1987). English translation in CYBNAW 23(1), 8–13 (1987) MathSciNetGoogle Scholar
  10. 10.
    Kasteleyn, P.W.: The statistics of dimers on a lattice, I. The number of dimer arrangements on a quadratic lattice. Physica 27, 1209–1225 (1961) CrossRefGoogle Scholar
  11. 11.
    Kenyon, C., Randall, D., Sinclair, A.: Approximating the number of monomer-dimer coverings of a lattice. J. Stat. Phys. 83, 637–659 (1996) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Matamala, M.: Personal Communication (2006) Google Scholar
  13. 13.
    Mulmuley, K., Vazirani, U.V., Vazirani, V.V.: Matching is as easy as matrix inversion. Combinatorica 7(1), 105–113 (1987) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Papadimitriou, C.: Polytopes and complexity. In: Pulleyblank, W.R. (ed.) Progress in Combinatorial Optimization, pp. 295–305. Academic, Don Mills (1984) Google Scholar
  15. 15.
    Sinclair, A.: Algorithms for Random Generation and Counting: A Markov Chain Approach (Progress in Theoretical Computer Science). Birkhäuser, Basel (1993) MATHGoogle Scholar
  16. 16.
    Temperley, H.N.V.: In: Combinatorics, Proceedings of the British Combinatorial Conference 1973. London Mathematical Society Lecture Notes Series No. 13, pp. 202–204 (1974) Google Scholar
  17. 17.
    Yi, T., Murty, K.G., Spera, C.: Matchings in colored bipartite networks. Discrete Appl. Math. 121(1–3),261–277 (2002) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Nayantara Bhatnagar
    • 1
  • Dana Randall
    • 1
  • Vijay V. Vazirani
    • 1
  • Eric Vigoda
    • 1
  1. 1.College of ComputingGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations