, Volume 50, Issue 3, pp 351–368 | Cite as

New Linear-Time Algorithms for Edge-Coloring Planar Graphs

  • Richard Cole
  • Łukasz KowalikEmail author


We show efficient algorithms for edge-coloring planar graphs. Our main result is a linear-time algorithm for coloring planar graphs with maximum degree Δ with max {Δ,9} colors. Thus the coloring is optimal for graphs with maximum degree Δ≥9. Moreover for Δ=4,5,6 we give linear-time algorithms that use Δ+2 colors. These results improve over the algorithms of Chrobak and Yung (J. Algorithms 10:35–51, 1989) and of Chrobak and Nishizeki (J. Algorithms 11:102–116, 1990) which color planar graphs using max {Δ,19} colors in linear time or using max {Δ,9} colors in \(\mathcal{O}(n\log n)\) time.


Edge-coloring Linear-time Algorithm Planar graph 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chrobak, M., Yung, M.: Fast algorithms for edge-coloring planar graphs. J. Algorithms 10, 35–51 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Chrobak, M., Nishizeki, T.: Improved edge-coloring algorithms for planar graphs. J. Algorithms 11, 102–116 (1990) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Vizing, V.G.: On the estimate of the chromatic class of a p-graph. Diskret. Anal. 3, 25–30 (1964) MathSciNetGoogle Scholar
  4. 4.
    Gabow, H.N., Nishizeki, T., Kariv, O., Leven, D., Terada, O.: Algorithms for edge coloring graphs. Technical Report TR-41/85, Department of Computer Science, Tel Aviv University (1985) Google Scholar
  5. 5.
    Cole, R., Ost, K., Schirra, S.: Edge-coloring bipartite multigraphs in O(Elog D) time. Combinatorica 21, 5–12 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Alon, N.: A simple algorithm for edge-coloring bipartite multigraphs. Inf. Process. Lett. 85(6), 301–302 (2003) CrossRefMathSciNetGoogle Scholar
  7. 7.
    Skulrattanakulchai, S.: 4-edge-coloring graphs of maximum degree 3 in linear time. Inf. Process. Lett. 81, 191–195 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Vizing, V.G.: Critical graphs with a given chromatic number. Diskret. Anal. 5, 9–17 (1965) zbMATHMathSciNetGoogle Scholar
  9. 9.
    Sanders, D.P., Zhao, Y.: Planar graphs of maximum degree 7 are class I. J. Comb. Theory Ser. B 83, 201–212 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Tait, P.G.: On the coloring of maps. Proc. R. Soc. Edinb. Sect. A 10, 501–503 (1878) Google Scholar
  11. 11.
    Robertson, N., Sanders, D.P., Seymour, P., Thomas, R.: Efficiently four-coloring planar graphs. In: Proceedings of the 28th Symposium on Theory of Computing, pp. 571–575. ACM, New York (1996) Google Scholar
  12. 12.
    Sanders, D.P.: Private communication (2005) Google Scholar
  13. 13.
    He, X.: An efficient algorithm for edge coloring planar graphs with Δ colors. Theor. Comput. Sci. 74, 299–312 (1990) zbMATHCrossRefGoogle Scholar
  14. 14.
    Borodin, O.V.: On the total coloring of planar graphs. J. Reine Angew. Math. 394, 180–185 (1989) zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Computer Science DepartmentNew York UniversityNew YorkUSA
  2. 2.Institute of InformaticsWarsaw UniversityWarsawPoland

Personalised recommendations