Algorithmica

, Volume 53, Issue 3, pp 337–357 | Cite as

Approximability of Minimum AND-Circuits

Article

Abstract

Given a set of monomials, the Minimum AND-Circuit problem asks for a circuit that computes these monomials using AND-gates of fan-in two and being of minimum size. We prove that the problem is not polynomial-time approximable within a factor of less than 1.0051 unless \(\mathsf{P}=\mathsf{NP}\) , even if the monomials are restricted to be of degree at most three. For the latter case, we devise several efficient approximation algorithms, yielding an approximation ratio of 1.278. For the general problem, we achieve an approximation ratio of d−3/2, where d is the degree of the largest monomial. In addition, we prove that the problem is fixed parameter tractable with the number of monomials as parameter. Finally, we discuss generalizations of the Minimum AND-Circuit problem and relations to addition chains and grammar-based compression.

Keywords

Approximation algorithms Inapproximability Circuit design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Englewood Cliffs (1993) Google Scholar
  2. 2.
    Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theor. Comput. Sci. 237(1–2), 123–134 (2000) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Allender, E., Hellerstein, L., McCabe, P., Pitassi, T., Saks, M.: Minimizing DNF formulas and ACd0 circuits given a truth table. In: Proc. of the 21st Ann. IEEE Conference on Computational Complexity (CCC), pp. 237–251. IEEE Press (2006) Google Scholar
  4. 4.
    Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties. Springer, New York (1999) MATHGoogle Scholar
  5. 5.
    Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A., Shelat, A.: The smallest grammar problem. IEEE Trans. Inf. Theory 51(7), 2554–2576 (2005) CrossRefMathSciNetGoogle Scholar
  6. 6.
    Chlebík, M., Chlebíková, J.: Complexity of approximating bounded variants of optimization problems. Theor. Comput. Sci. 354(3), 320–338 (2006) MATHCrossRefGoogle Scholar
  7. 7.
    Cornuéjols, G.P., Fisher, M.L., Nemhauser, G.L.: Location of bank accounts to optimize float: an analytic study of exact and approximate algorithms. Manag. Sci. 23(8), 789–810 (1977) MATHCrossRefGoogle Scholar
  8. 8.
    Downey, P.J., Leong, B.L., Sethi, R.: Computing sequences with addition chains. SIAM J. Comput. 10(3), 638–646 (1981) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, New York (1999) Google Scholar
  10. 10.
    Feldman, V.: Hardness of approximate two-level logic minimization and PAC learning with membership queries. In: Proc. of the 38th Ann. ACM Symp. on Theory of Computing (STOC), pp. 363–372. ACM Press, New York (2006) Google Scholar
  11. 11.
    Garey, M.R., Johnson, D.S., Stockmeyer, L.K.: Some simplified NP-complete graph problems. Theor. Comput. Sci. 1(3), 237–267 (1976) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9(3), 256–278 (1974) MATHCrossRefGoogle Scholar
  13. 13.
    Kabanets, V., Cai, J.-Y.: Circuit minimization problems. In: Proc. of the 32nd Ann. ACM Symp. on Theory of Computing (STOC), pp. 73–79. ACM Press, New York (2000) Google Scholar
  14. 14.
    Kieffer, J.C., Yang, E.-H.: Grammar based codes: a new class of universal lossless source codes. IEEE Trans. Inf. Theory 46(3), 737–754 (2000) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Knuth, D.E.: Seminumerical Algorithms, vol. 2, The Art of Computer Programming, 2nd edn. Addison-Wesley, Reading (1981) MATHGoogle Scholar
  16. 16.
    Storer, J.A., Szymanski, T.G.: The macro model for data compression. In: Proc. of the 10th Ann. ACM Symp. on Theory of Computing (STOC), pp. 30–39. ACM Press, New York (1978) Google Scholar
  17. 17.
    Tarjan, R.E.: Complexity of monotone networks for computing conjunctions. Ann. Discret. Math. 2, 121–133 (1978) MathSciNetGoogle Scholar
  18. 18.
    Thurber, E.G.: Efficient generation of minimal length addition chains. SIAM J. Comput. 28(4), 1247–1263 (1999) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Umans, C.: The minimum equivalent DNF problem and shortest implicants. J. Comput. Syst. Sci. 63(4), 597–611 (2001) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Wegener, I.: The Complexity of Boolean Functions. Wiley-Teubner (1987) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of StatisticsUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of Computer ScienceYale UniversityNew HavenUSA

Personalised recommendations