, Volume 49, Issue 2, pp 109–126 | Cite as

Analysis of Randomized Protocols for Conflict-Free Distributed Access



We study the following distributed access problem which arises naturally in many settings: given a set of n data items shared among n nodes in a distributed network, all nodes want to access all (or a subset of) the items residing on different nodes in a conflict-free manner. In addition, items may move from one node to the other during access. Our goal is to design distributed protocols so that all nodes access all the desired items as quickly as possible, while at the same time not overloading the storage space of any one node. Using centralized coordination among the nodes it is easy to design an optimal scheme in which all nodes can access all the items in n−1 steps storing only one item at any time. We show that a simple randomized distributed protocol performs almost as well as the optimal (centralized) scheme but with no coordination overhead. Our protocol takes O(n) time with high probability to access all n items which is asymptotically as good as the optimal centralized scheme. The protocol guarantees that the maximum load (the maximum number of items stored in any node) at any time is at most O(log n/log log n) with high probability which is only slightly larger compared to the Ω(1) load of the optimal scheme. Our analysis involves a stochastic analysis of a “balls into bins” problem in a dynamic setting where balls (data items) move into bins (nodes) on request and we study the time and load requirements to move all the balls to the requested bins.


Randomized distributed protocols Conflict-free access 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angluin, D., Valiant, L.: Fast probabilistic algorithms for Hamiltonian circuits and matchings. J. Comput. Syst. Sci. 18, 155–193 (1979) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Azar, Y., Broder, A., Karlin, A., Upfal, E.: Balanced allocations. SIAM J. Comput. 29, 180–200 (2000) CrossRefMathSciNetGoogle Scholar
  3. 3.
    Dilman, M., Raz, D.: Efficient reactive monitoring. IEEE J. Sel. Areas Commun. 20, 668–676 (2002) CrossRefGoogle Scholar
  4. 4.
    Dubhashi, D., Ranjan, D.: Balls and bins: a study in negative dependence. Random Struct. Algorithms 13(2), 99–124 (1998) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Feige, U., Peleg, D., Raghavan, P., Upfal, E.: Randomized broadcast in networks. Random Struct. Algorithms 1, 447–460 (1990) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Gallager, R.: A perspective on multiaccess channels. IEEE Trans. Inf. Theory 31(2), 124–142 (1985) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Goldberg, L., Mackenzie, P., Paterson, M., Srinivasan, A.: Contention resolution with constant expected delay. J. ACM 47(6), 1048–1096 (2000) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Goldberg, L., Jerrum, M., Kannan, S., Paterson, M.: A bound on the capacity of backoff and acknowledgment-based protocols. SIAM J. Comput. 33(2), 313–331 (2004) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hastad, J., Leighton, F., Rogoff, B.: Analysis of backoff protocols for multiple access channels. SIAM J. Comput. 25(4), 740–774 (1996) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Johnson, N.L., Kotz, S.: Urn Models and their Applications. Wiley, New York (1977) Google Scholar
  11. 11.
    Jagannathan, S., Pandurangan, G., Srinivasan, S.: Query protocols for highly resilient peer-to-peer networks. In: Proc. of the 19th International Conference on Parallel and Distributed Computing Systems, pp. 247–252 (2006) Google Scholar
  12. 12.
    Karp, R., Schindelhauer, C., Shenker, S., Vocking, B.: Randomized rumor spreading. In: IEEE Symposium on Foundations of Computer Science, pp. 565–574 (2000) Google Scholar
  13. 13.
    Kempe, D., Kleinberg, J.: Protocols and impossibility results for gossip-based communication mechanisms. In: Proceedings of The 43rd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 471–480 (2002) Google Scholar
  14. 14.
    Kempe, D., McSherry, F.: A decentralized algorithm for spectral analysis. In: Proceedings of STOC, pp. 561–568 (2004) Google Scholar
  15. 15.
    Kempe, D., Kleinberg, J., Demers, A.: Spatial gossip and resource location protocols. In: Proc. of ACM Symposium on Theory of Computing (STOC), pp. 163–172 (2001) Google Scholar
  16. 16.
    Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate information. In: IEEE FOCS, pp. 482–491 (2003) Google Scholar
  17. 17.
    Kolchin, V., Chistiakov, V., Sevastianov, B.: Random Allocations. V.H. Winston, New York (1978) Google Scholar
  18. 18.
    Lotker, Z., Patt-Shamir, B., Pavlov, E., Peleg, D.: Minimum-weight spanning tree construction in O(log log n) communication rounds. SIAM J. Comput. 35(1), 120–131 (2005) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, Cambridge (2005) MATHGoogle Scholar
  20. 20.
    Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) MATHGoogle Scholar
  21. 21.
    Ozsu, M., Valduriez, P.: Principles of Distributed Database Systems, 2nd edn. Prentice-Hall, Englewood Cliffs (1999) Google Scholar
  22. 22.
    Panconesi, A., Srinivasan, A.: Randomized distributed edge coloring via an extension of the Chernoff-Hoeffding bounds. SIAM J. Comput. 26, 350–368 (1997) MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Peleg, D.: Distributed Computing: A Locality Sensitive Approach. SIAM, Philadelphia (2000) MATHGoogle Scholar
  24. 24.
    Rabin, M.: Efficient dispersal of information for security, load balancing, and fault tolerance. J. ACM 36(2), 335–348 (1989) MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-addressable network. In: Proceedings of ACM SIGCOMM, pp. 161–172 (2001) Google Scholar
  26. 26.
    Raghavan, P., Upfal, E.: Stochastic contention resolution with short delays. SIAM J. Comput. 28(2), 709–719 (1998) MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Srinivasan, A.: Approximation algorithms via randomized rounding: a survey. In: Karonski, M., Promel, H.J. (eds.) Lectures on Approximation and Randomized Algorithms. Series in Advanced Topics in Mathematics, pp. 9–71. Polish Scientific Publishers PWN, Warszawa (1999) Google Scholar
  28. 28.
    Stoica, I., Morris, R., Karger, D., Kaashoek, M., Balakrishnan, H.: Chord: a scalable peer-to-peer lookup service for Internet applications. In: Proceedings of ACM SIGCOMM, pp. 149–160 (2001) Google Scholar
  29. 29.
    Szpankowski, W.: Average Case Analysis of Algorithms on Sequences. Wiley, New York (2001) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Computer SciencePurdue UniversityWest LafayetteUSA

Personalised recommendations