Advertisement

Algorithmica

, Volume 49, Issue 3, pp 171–191 | Cite as

Exact and Approximate Truthful Mechanisms for the Shortest Paths Tree Problem

  • Luciano GualàEmail author
  • Guido Proietti
Article

Abstract

Let a communication network be modeled by an undirected graph G=(V,E) of n nodes and m edges, and assume that edges are controlled by selfish agents. In this paper we analyze the problem of designing a truthful mechanism for computing one of the most popular structures in communication networks, i.e., the single-source shortest paths tree.

More precisely, we will study several realistic scenarios, in which each agent can own either a single or multiple edges of G. In particular, for the single-edge case, we will show that: (i) in the classic utilitarian case, the problem can be solved efficiently in O(mnlog α(m,n)) time, where α(m,n) is the inverse of the Ackermann’s function; (ii) in a meaningful non-utilitarian case, namely that in which agents’ valuation functions only depend on the edge lengths, the problem can be solved in O(m+nlog n) time. Conversely, for the multiple-edges case, we will show in the utilitarian case an O(mP+nPlog n) time truthful mechanism, where P=O(n) denotes the number of agents participating in the solution, while in the same non-utilitarian case we will prove a general lower bound to the approximation ratio that can be achieved by any truthful mechanism, by showing that no c-approximate mechanism can exist, for any fixed \(c<\frac{5+\sqrt{13}}{3+\sqrt{13}}\) .

Keywords

Single-source shortest paths tree Selfish agents Algorithmic mechanism design Truthful mechanisms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Archer, A., Tardos, É.: Truthful mechanisms for one-parameter agents. In: Proc. 42nd IEEE Symp. on Foundations of Computer Science (FOCS’01), pp. 482–491 (2001) Google Scholar
  2. 2.
    Buchsbaum, A.L., Kaplan, H., Rogers, A., Westbrook, J.: Linear-time pointer-machine algorithms for least common ancestors, MST verification, and dominators. In: Proc. 30th ACM Symp. on Theory of Computing (STOC’98), pp. 279–288 (1998) Google Scholar
  3. 3.
    Chazelle, B.: A minimum spanning tree algorithm with inverse-Ackermann time complexity. J. ACM 47(6), 1028–1047 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cisco Systems Inc.©: Internetworking Technologies Handbook. Cisco Press (2004) Google Scholar
  5. 5.
    Clarke, E.: Multipart pricing of public goods. Public Choice 8, 17–33 (1971) CrossRefGoogle Scholar
  6. 6.
    Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34(3), 596–615 (1987) CrossRefMathSciNetGoogle Scholar
  7. 7.
    Gabow, H.N.: A scaling algorithm for weighted matching on general graphs. In: Proc. 26th IEEE Symp. on Foundations of Computer Science (FOCS’85), pp. 90–100 (1985) Google Scholar
  8. 8.
    Groves, T.: Incentives in teams. Econometrica 41(4), 617–631 (1973) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gualà, L., Proietti, G.: A truthful (2-2/k)-approximation mechanism for the Steiner tree problem with k terminals. In: Proc. 11th Int. Computing and Combinatorics Conference (COCOON’05). Lecture Notes in Computer Science, vol. 3595, pp. 390–400. Springer, New York (2005) Google Scholar
  10. 10.
    Hershberger, J., Suri, S.: Vickrey prices and shortest paths: what is an edge worth? In: Proc. 42nd IEEE Symp. on Foundations of Computer Science (FOCS’01), pp. 252–259 (2001) Google Scholar
  11. 11.
    Malik, K., Mittal, A.K., Gupta, S.K.: The k most vital arcs in the shortest path problem. Oper. Res. Lett. 8, 223–227 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Nardelli, E., Proietti, G., Widmayer, P.: A faster computation of the most vital edge of a shortest path. Inf. Process. Lett. 79(2), 81–85 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Nardelli, E., Proietti, G., Widmayer, P.: Swapping a failing edge of a single source shortest paths tree is good and fast. Algorithmica 36(4), 361–374 (2003) CrossRefMathSciNetGoogle Scholar
  14. 14.
    Nardelli, E., Proietti, G., Widmayer, P.: Finding the most vital node of a shortest path. Theor. Comput. Sci. 296(1), 167–177 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Nardelli, E., Proietti, G., Widmayer, P.: Nearly linear time minimum spanning tree maintenance for transient node failures. Algorithmica 40(2), 119–132 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Nisan, N., Ronen, A.: Algorithmic mechanism design. Games Econ. Behav. 35, 166–196 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge (1994) Google Scholar
  18. 18.
    Pettie, S., Ramachandran, V.: Computing shortest paths with comparisons and additions. In: Proc. 13th ACM Symp. on Discrete Algorithms (SODA’02), pp. 267–276 (2002) Google Scholar
  19. 19.
    Proietti, G., Widmayer, P.: A truthful mechanism for the non-utilitarian minimum radius spanning tree problem. In: Proc. 17th ACM Symp. on Parallelism in Algorithms and Architectures (SPAA’05), pp. 195–202 (2005) Google Scholar
  20. 20.
    Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM 22(2), 215–225 (1975) zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Vickrey, W.: Counterspeculation, auctions and competitive sealed tenders. J. Finance 16, 8–37 (1961) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Dipartimento di InformaticaUniversità di L’AquilaL’AquilaItaly
  2. 2.Dipartimento di MatematicaUniversità di Tor VergataRomeItaly
  3. 3.Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti”CNRRomeItaly

Personalised recommendations