Advertisement

Algorithmica

, Volume 49, Issue 3, pp 245–257 | Cite as

A Tight Lower Bound for Computing the Diameter of a 3D Convex Polytope

  • Hervé Fournier
  • Antoine Vigneron
Article

Abstract

The diameter of a set P of n points in ℝ d is the maximum Euclidean distance between any two points in P. If P is the vertex set of a 3-dimensional convex polytope, and if the combinatorial structure of this polytope is given, we prove that, in the worst case, deciding whether the diameter of P is smaller than 1 requires Ω(nlog n) time in the algebraic computation tree model. It shows that the O(nlog n) time algorithm of Ramos for computing the diameter of a point set in ℝ3 is optimal for computing the diameter of a 3-polytope. We also give a linear time reduction from Hopcroft’s problem of finding an incidence between points and lines in ℝ2 to the diameter problem for a point set in ℝ7.

Keywords

Computational geometry Lower bound Diameter Convex polytope Hopcroft’s problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ben-Or, M.: Lower bounds for algebraic computation trees. In: Proceedings of the 15th Annual ACM Symposium on Theory of Computing, pp. 80–86 (1983) Google Scholar
  2. 2.
    Bespamyatnikh, S.: An efficient algorithm for the three-dimensional diameter problem. Discrete Comput. Geom. 25(2), 235–255 (2000) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bürgisser, P., Clausen, M., Shokrollahi, M.: Algebraic Complexity Theory. Springer, Berlin (1997) zbMATHGoogle Scholar
  4. 4.
    Bürgisser, P., Karpinski, M., Lickteig, T.: On randomized semi-algebraic test complexity. J. Complex. 9(2), 231–251 (1993) zbMATHCrossRefGoogle Scholar
  5. 5.
    Chan, T.: Approximating the diameter, width, smallest enclosing cylinder, and minimum-width annulus. Int. J. Comput. Geom. Appl. 12(1–2), 67–85 (2002) zbMATHCrossRefGoogle Scholar
  6. 6.
    Chazelle, B., Devillers, O., Hurtado, F., Mora, M., Sacristán, V., Teillaud, M.: Splitting a Delaunay triangulation in linear time. Algorithmica 34(1), 39–46 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Clarkson, K., Shor, P.: Applications of random sampling in computational geometry, II. Discrete Comput. Geom. 4, 387–421 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 2nd edn. Springer, Berlin (2000) zbMATHGoogle Scholar
  9. 9.
    Erickson, J.: On the relative complexities of some geometric problems. In: Proceedings of the 7th Canadian Conference on Computational Geometry, pp. 85–90 (1995) Google Scholar
  10. 10.
    Erickson, J.: New lower bounds for Hopcroft’s problem. Discrete Comput. Geom. 16, 389–418 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Grigoriev, D.: Randomized complexity lower bounds. In: Proceedings of the 30th ACM Symposium on Theory of Computing, pp. 219–223 (1998) Google Scholar
  12. 12.
    Har-Peled, S.: A practical approach for computing the diameter of a point set. In: Proceedings of the Seventeenth Annual Symposium on Computational Geometry, New York, 3–5 June 2001, pp. 177–186. ACM, New York (2001) CrossRefGoogle Scholar
  13. 13.
    Malandain, G., Boissonnat, J.-D.: Computing the diameter of a point set. Int. J. Comput. Geom. Appl. 12(6), 489–510 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Matoušek, J.: Range searching with efficient hierarchical cuttings. Discrete Comput. Geom. 10(2), 157–182 (1993) CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Matoušek, J., Schwarzkopf, O.: On ray shooting in convex polytopes. Discrete Comput. Geom. 10(2), 215–232 (1993) CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Preparata, F., Shamos, I.: Computational Geometry: An Introduction, 2nd edn. Texts and Monographs in Computer Science. Springer, New York (1985) Google Scholar
  17. 17.
    Ramos, E.: An optimal deterministic algorithm for computing the diameter of a three-dimensional point set. Discrete Comput. Geom. 26, 233–244 (2001) zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Laboratoire PRiSMUniversité de Versailles Saint-Quentin-en-YvelinesVersailles cedexFrance
  2. 2.INRAUR341 Mathématiques et Informatique AppliquéesJouy-en-Josas cedexFrance

Personalised recommendations