, Volume 49, Issue 3, pp 245–257 | Cite as

A Tight Lower Bound for Computing the Diameter of a 3D Convex Polytope

  • Hervé Fournier
  • Antoine Vigneron


The diameter of a set P of n points in ℝ d is the maximum Euclidean distance between any two points in P. If P is the vertex set of a 3-dimensional convex polytope, and if the combinatorial structure of this polytope is given, we prove that, in the worst case, deciding whether the diameter of P is smaller than 1 requires Ω(nlog n) time in the algebraic computation tree model. It shows that the O(nlog n) time algorithm of Ramos for computing the diameter of a point set in ℝ3 is optimal for computing the diameter of a 3-polytope. We also give a linear time reduction from Hopcroft’s problem of finding an incidence between points and lines in ℝ2 to the diameter problem for a point set in ℝ7.


Computational geometry Lower bound Diameter Convex polytope Hopcroft’s problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ben-Or, M.: Lower bounds for algebraic computation trees. In: Proceedings of the 15th Annual ACM Symposium on Theory of Computing, pp. 80–86 (1983) Google Scholar
  2. 2.
    Bespamyatnikh, S.: An efficient algorithm for the three-dimensional diameter problem. Discrete Comput. Geom. 25(2), 235–255 (2000) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bürgisser, P., Clausen, M., Shokrollahi, M.: Algebraic Complexity Theory. Springer, Berlin (1997) zbMATHGoogle Scholar
  4. 4.
    Bürgisser, P., Karpinski, M., Lickteig, T.: On randomized semi-algebraic test complexity. J. Complex. 9(2), 231–251 (1993) zbMATHCrossRefGoogle Scholar
  5. 5.
    Chan, T.: Approximating the diameter, width, smallest enclosing cylinder, and minimum-width annulus. Int. J. Comput. Geom. Appl. 12(1–2), 67–85 (2002) zbMATHCrossRefGoogle Scholar
  6. 6.
    Chazelle, B., Devillers, O., Hurtado, F., Mora, M., Sacristán, V., Teillaud, M.: Splitting a Delaunay triangulation in linear time. Algorithmica 34(1), 39–46 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Clarkson, K., Shor, P.: Applications of random sampling in computational geometry, II. Discrete Comput. Geom. 4, 387–421 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 2nd edn. Springer, Berlin (2000) zbMATHGoogle Scholar
  9. 9.
    Erickson, J.: On the relative complexities of some geometric problems. In: Proceedings of the 7th Canadian Conference on Computational Geometry, pp. 85–90 (1995) Google Scholar
  10. 10.
    Erickson, J.: New lower bounds for Hopcroft’s problem. Discrete Comput. Geom. 16, 389–418 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Grigoriev, D.: Randomized complexity lower bounds. In: Proceedings of the 30th ACM Symposium on Theory of Computing, pp. 219–223 (1998) Google Scholar
  12. 12.
    Har-Peled, S.: A practical approach for computing the diameter of a point set. In: Proceedings of the Seventeenth Annual Symposium on Computational Geometry, New York, 3–5 June 2001, pp. 177–186. ACM, New York (2001) CrossRefGoogle Scholar
  13. 13.
    Malandain, G., Boissonnat, J.-D.: Computing the diameter of a point set. Int. J. Comput. Geom. Appl. 12(6), 489–510 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Matoušek, J.: Range searching with efficient hierarchical cuttings. Discrete Comput. Geom. 10(2), 157–182 (1993) CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Matoušek, J., Schwarzkopf, O.: On ray shooting in convex polytopes. Discrete Comput. Geom. 10(2), 215–232 (1993) CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Preparata, F., Shamos, I.: Computational Geometry: An Introduction, 2nd edn. Texts and Monographs in Computer Science. Springer, New York (1985) Google Scholar
  17. 17.
    Ramos, E.: An optimal deterministic algorithm for computing the diameter of a three-dimensional point set. Discrete Comput. Geom. 26, 233–244 (2001) zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Laboratoire PRiSMUniversité de Versailles Saint-Quentin-en-YvelinesVersailles cedexFrance
  2. 2.INRAUR341 Mathématiques et Informatique AppliquéesJouy-en-Josas cedexFrance

Personalised recommendations